首页 | 本学科首页   官方微博 | 高级检索  
     

Rosenbrock 搜索与动态惯性权重粒子群混合优化算法
引用本文:贾树晋 杜斌. Rosenbrock 搜索与动态惯性权重粒子群混合优化算法[J]. 控制与决策, 2011, 26(7): 1061-1064
作者姓名:贾树晋 杜斌
作者单位:1. 上海交通大学自动化系,上海,200240
2. 上海宝钢研究院自动化所,上海,201900
摘    要:为了提高复杂优化问题的优化精度和鲁棒性能,提出两种将Rosenbrock搜索与动态惯性权重粒子群(DIPSO)相结合的混合算法,即"协同"与"接力"混合算法.两种算法充分利用了Rosenbrock搜索算法强大的局部搜索能力和DIPSO算法的全局寻优能力,很好地平衡了算法的全局"探索"与局部"开发".通过4个典型基准函数的实验研究,表明了所提出的算法具有优化精度高、鲁棒性强等特点,适合于对高维多峰函数进行优化.

关 键 词:Rosenbrock搜索算法  粒子群优化算法  高维多峰函数优化
收稿时间:2010-04-12
修稿时间:2010-07-21

Hybrid optimized algorithms based on the Rosenbrock search method and dynamic inertia weight PSO
JIA Shu-jin,DU Bin. Hybrid optimized algorithms based on the Rosenbrock search method and dynamic inertia weight PSO[J]. Control and Decision, 2011, 26(7): 1061-1064
Authors:JIA Shu-jin  DU Bin
Affiliation:JIA Shu-jin~1,DU Bin~2 (1.Department of Automation,Shanghai Jiao Tong University,Shanghai 200240,China,2.Research Institute of Automation,Academy of Baosteel,Shanghai 201900,China.
Abstract:In order to improve the accuracy and robustness performance of complex optimization problems,two hybrid algorithms,which combine the Rosenbrock search method and dynamic inertia weight PSO(DIPSO),are proposed in this paper.The algorithms make full use of the powerful local search ability of the Rosenbrock search method and the global optimization ability of DIPSO algorithm,which well balance the globalexplorationand the localexploitation.The experiment study in four typical benchmark functions show that the...
Keywords:Rosenbrock search method  PSO  high-dimensional and multimodal function optimization  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号