首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental and numerical study of forced convection heat transfer in different internally ribbed tubes configuration using TiO2 nanofluid
Authors:Aadel A R Al Kumait  Thamir K Ibrahim  Maysoon A Abdullah
Abstract:TiO2/water nanofluid is used together with a ribbed tube for heat transfer augmentation. This paper presents an experimental and numerical investigation to study the influence of the ribs' pitch distance and ribbed tube configuration on heat transfer using TiO 2 nanofluid in a turbulent regime with Reynolds numbers of 5000‐40 000. Meanwhile, the fluid properties are assumed to be constant with temperature under uniform heat flux. The average nanoparticle size is 50 nm and volume fractions of 0% to 1% are adopted. The study is accomplished by using the finite volume method, and its objective involves finding a low friction factor and high heat transfer enhancement in the presence of TiO 2/water nanofluids. In comparison with the plain tube, a helical ribbed tube provides higher performance evaluation criteria (about 2.0%), while circumferentially ribbed tube provides 1.9% and longitudinal ribbed tube provides 1.88%. The helical ribbed tubes with a 5.89 mm pitch distance gave higher turbulent kinetic energy due to a stronger swirl intensity, resulting in a thinner thermal boundary layer and a higher Nusselt number with uniform distribution. The nonlinear models of friction factor and Nusselt number have been predicted with a maximum deviation of ±3% and ±2%, respectively.
Keywords:forced convection  heat transfer  helix angle  nanofluids  ribbed tube  titanium oxide
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号