首页 | 本学科首页   官方微博 | 高级检索  
     


Sequential Targeting TGF‐β Signaling and KRAS Mutation Increases Therapeutic Efficacy in Pancreatic Cancer
Authors:Yuanyuan Pei  Liang Chen  Yukun Huang  Jiahao Wang  Jingxian Feng  Minjun Xu  Yu Chen  Qingxiang Song  Gan Jiang  Xiao Gu  Qian Zhang  Xiaoling Gao  Jun Chen
Abstract:Pancreatic cancer is a highly aggressive malignancy that strongly resists extant treatments. The failure of existing therapies is majorly attributed to the tough tumor microenvironment (TME) limiting drug access and the undruggable targets of tumor cells. The formation of suppressive TME is regulated by transforming growth factor beta (TGF‐β) signaling, while the poor response and short survival of almost 90% of pancreatic cancer patients results from the oncogenic KRAS mutation. Hence, simultaneously targeting both the TGF‐β and KRAS pathways might dismantle the obstacles of pancreatic cancer therapy. Here, a novel sequential‐targeting strategy is developed, in which antifibrotic fraxinellone‐loaded CGKRK‐modified nanoparticles (Frax‐NP‐CGKRK) are constructed to regulate TGF‐β signaling and siRNA‐loaded lipid‐coated calcium phosphate (LCP) biomimetic nanoparticles (siKras‐LCP‐ApoE3) are applied to interfere with the oncogenic KRAS. Frax‐NP‐CGKRK successfully targets the tumor sites through the recognition of overexpressed heparan sulfate proteoglycan, reverses the activated cancer‐associated fibroblasts (CAFs), attenuates the dense stroma barrier, and enhances tumor blood perfusion. Afterward, siKras‐LCP‐ApoE3 is efficiently internalized by the tumor cells through macropinocytosis and specifically silencing KRAS mutation. Compared with gemcitabine, this sequential‐targeting strategy significantly elongates the lifespans of pancreatic tumor‐bearing animals, hence providing a promising approach for pancreatic cancer therapy.
Keywords:KRAS  pancreatic cancer  sequential therapy  TGF‐β  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号