首页 | 本学科首页   官方微博 | 高级检索  
     


The comparison between force volume and peakforce quantitative nanomechanical mode of atomic force microscope in detecting cell's mechanical properties
Authors:Yang Yang  Xiaoxiao Xiao  Yan Peng  Chen Yang  Siqi Wu  Yuanyuan Liu  Tao Yue  Huayan Pu  Na Liu  Haowen Jiang
Abstract:Atomic force microscope (AFM) has been widely used in the biological field owing to its high sensitivity (subnanonewton), high spatial resolution (nanometer), and adaptability to physiological environments. Nowadays, force volume (FV) and peakforce quantitative nanomechanical (QNM) are two distinct modes of AFM used in biomechanical research. However, numerous studies have revealed an extremely confusing phenomenon that FV mode has a significant difference with QNM in determining the mechanical properties of the same samples. In this article, for the case of human benign prostatic hyperplasia cells (BPH) and two cancerous prostate cells with different grades of malignancy (PC3 and DU145), the differences were compared between FV and QNM modes in detecting mechanical properties. The results show measured Young's modulus of the same cells in FV mode was much lower than that obtained by QNM mode. Combining experimental results with working principles of two modes, it is indicated that surface adhesion is highly suspected to be a critical factor resulting in the measurement difference between two modes. To further confirm this conjecture, various weight ratios of polydimethylsiloxane (PDMS) were assessed by two modes, respectively. The results show that the difference of Young's modulus measured by two modes increases with the surface adhesion of PDMS, confirming that adhesion is one of the significant elements that lead to the measurement difference between FV and QNM modes.
Keywords:adhesion  atomic force microscopy  force volume (FV)  peakforce quantitative nanomechanical (QNM)  Young's modulus
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号