首页 | 本学科首页   官方微博 | 高级检索  
     


Laser‐Ignited Relay‐Domino‐Like Reactions in Graphene Oxide/CL‐20 Films for High‐Temperature Pulse Preparation of Bi‐Layered Photothermal Membranes
Authors:Xiaodong Li  Bing Huang  Rui Li  Hong‐ping Zhang  Wenzhi Qin  Zhiqiang Qiao  Yousong Liu  Guangcheng Yang
Abstract:Light‐ignited combustions have been proposed for a variety of industrial and scientific applications. They suffer, however, from ultrahigh light ignition thresholds and poor self‐propagating combustion of typical high‐energy density materials, e.g., 2,4,6,8,10,12‐(hexanitrohexaaza)cyclododecane (CL‐20). Here, reported is that both light ignition and combustion performance of CL‐20 are greatly enhanced by embedding ε‐CL‐20 particles in a graphene oxide (GO) matrix. The GO matrix yields a drastic temperature rise that is sufficient to trigger the combustion of GO/CL‐20 under low laser irradiation (35.6 mJ) with only 6 wt% of GO. The domino‐like reduction‐combustion of the GO matrix can serve as a relay and deliver the decomposition‐combustion of CL‐20 to its neighbor sites, forming a relay‐domino‐like reaction. In particular, a synergistic reaction between GO and CL‐20 occurrs, facilitating more energy release of the GO/CL‐20 composite. The novel relay‐domino‐like reaction coupled with the synergistic reaction of CL‐20 and GO results in a deflagration of the material, which generates a high‐temperature pulse (HTP) that can be guided to produce advanced functional materials. As a proof of concept, a bi‐layered photothermal membrane is prepared by HTP treatment in an extremely simple and fast way, which can serve as a model architecture for efficient interfacial water evaporation.
Keywords:graphene oxide  high‐temperature pulses  interfacial water evaporation  light ignited combustions  relay‐domino‐like reaction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号