首页 | 本学科首页   官方微博 | 高级检索  
     


Nitrogen‐Doped Graphene‐Encapsulated Nickel–Copper Alloy Nanoflower for Highly Efficient Electrochemical Hydrogen Evolution Reaction
Authors:Bin Liu  Hui‐Qing Peng  Junye Cheng  Kui Zhang  Da Chen  Dong Shen  Shuilin Wu  Tianpeng Jiao  Xin Kong  Qili Gao  Shuyu Bu  Chun‐Sing Lee  Wenjun Zhang
Abstract:Development of high‐performance and low‐cost nonprecious metal electrocatalysts is critical for eco‐friendly hydrogen production through electrolysis. Herein, a novel nanoflower‐like electrocatalyst comprising few‐layer nitrogen‐doped graphene‐encapsulated nickel–copper alloy directly on a porous nitrogen‐doped graphic carbon framework (denoted as Nix Cuy @ NG‐NC) is successfully synthesized using a facile and scalable method through calcinating the carbon, copper, and nickel hydroxy carbonate composite under inert atmosphere. The introduction of Cu can effectively modulate the morphologies and hydrogen evolution reaction (HER) performance. Moreover, the calcination temperature is an important factor to tune the thickness of graphene layers of the Nix Cuy @ NG‐NC composites and the associated electrocatalytic performance. Due to the collective effects including unique porous flowered architecture and the synergetic effect between the bimetallic alloy core and graphene shell, the Ni3Cu1@ NG‐NC electrocatalyst obtained under optimized conditions exhibits highly efficient and ultrastable activity toward HER in harsh environments, i.e., a low overpotential of 122 mV to achieve a current density of 10 mA cm?2 with a low Tafel slope of 84.2 mV dec?1 in alkaline media, and a low overpotential of 95 mV to achieve a current density of 10 mA cm?2 with a low Tafel slope of 77.1 mV dec?1 in acidic electrolyte.
Keywords:bimetal alloys  nitrogen‐doped carbon  electrocatalysis  hydrogen evolution
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号