首页 | 本学科首页   官方微博 | 高级检索  
     


Bifacial Contact Junction Engineering for High‐Performance Perovskite Solar Cells with Efficiency Exceeding 21%
Authors:Wu‐Qiang Wu  Jin‐Feng Liao  Yong Jiang  Lianzhou Wang  Dai‐Bin Kuang
Abstract:Ordered 1D metal oxide structure is desirable in thin film solar cells owing to its excellent charge collection capability. However, the electron transfer in 1D electron transporting layer (ETL)‐based devices is still limited to a submicrometer‐long pathway that is vertical to the substrate. Here, an innovative closely packed rutile TiO2 nanowire (CRTNW) network parallel to the facet of fluorine‐doped tin oxide (FTO) substrate is reported, which can serve as a 1D nanoscale electron transport pathway for efficient perovskite solar cells (PSCs). The PSC constructed using newly prepared CRTNW ETL achieves an impressive power conversion efficiency of 21.10%, which can be attributed to the facilitated electron extraction induced by the favorable junctions formed at FTO/ETL and ETL/perovskite interfaces and also the suppressed charge recombination originating from improved perovskite morphology with large grains, flat surface, and good surface coverage. The bifacial contact junctions engineering also enables large‐area device fabrication. The PSC with 1 cm2 aperture yields an efficiency of 19.50% under one sun illumination. This work highlights the significance of controlling the orientation and packing density of the ordered 1D oxide nanostructured thin films for highly efficient optoelectronic devices in a large‐scale manner.
Keywords:charge extraction  heterojunctions  interfaces  nanowires  perovskites
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号