首页 | 本学科首页   官方微博 | 高级检索  
     


Austenite recrystallization and carbonitride precipitation in niobium microalloyed steels
Authors:J. G. Speer  S. S. Hansen
Affiliation:(1) Homer Research Laboratories, Bethlehem Steel Corporation, 18016 Bethlehem, PA
Abstract:The response of austenite to thermomechanical treatment is investigated in two series of niobium microalloyed steels. Optical and electron metallographic techniques were used to follow the austenite recrystallization and carbonitride precipitation reactions in these steels. The first series of steels contained a constant level of 0.05Nb, with carbon levels varying from 0.008 to 0.25 pct. It was found that a lower carbon concentration results in faster austenite recrystallization, due to a smaller carbonitride supersaturation, which leads to a reduced precipitate nucleation rate. The second series of steels was designed with a constant carbonitride supersaturation, by simultaneously varying the Nb and C concentrations while maintaining a constant solubility product. In these steels, the recrystallization kinetics increase as the volume fraction of Nb(C, N) is reduced and/or as the precipitate coarsening rate is increased. The volume fraction of carbonitrides increases as the Nb: (C+12/14 N) ratio approaches the stoichiometric ratio of approximately 8:1. The precipitate coarsening rate was shown to increase with increasing amounts of niobium remaining in solution in the austenite (i. e., “excess” Nb after precipitation). As expected, recrystallization proceeds more slowly at lower temperatures and after a reduced amount of deformation. An experiment to determine whether Nb atoms dissolved in the austenite could exert a significant solute-drag effect on the recrystallization reaction indicated that 0.20Nb in solution could reduce the rate of recrystallization compared to a Nb-free C-Mn steel. However, this solute effect was smaller than the retarding effect which 0.01Nb can have when it is precipitated in the form of carbonitrides on the austenite substructure after rolling.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号