首页 | 本学科首页   官方微博 | 高级检索  
     

对称型内平动齿轮系统的非线性动力学分析
引用本文:赵自强,赵利敏,程爱明,张春林. 对称型内平动齿轮系统的非线性动力学分析[J]. 振动与冲击, 2012, 31(15): 68-74. DOI:  
作者姓名:赵自强  赵利敏  程爱明  张春林
作者单位:1.北京理工大学 机械与车辆学院,北京 100081;2.河南工程学院 数理科学系,郑州 451191;3. 恒润科技,北京 100101
基金项目:某部预研项目,北京理工大学优秀青年教师计划,北京理工大学基础科研
摘    要:摘要:基于拉格朗日方程,建立了含有两个呈对称布置的平动齿轮的内平动齿轮传动机构的动力学模型,通过啮合相对位移函数分析及无量纲化处理,得到系统的无量纲6自由度运动微分方程。通过对系统可能存在的不对称因素(平动齿轮支撑轴承不对称、啮合间隙不对称以及平动齿轮受载不对称)对系统动力学特性的影响进行分析,表明三种不对称因素均会引起系统的分岔,且混沌区域随非对称因素的不同表现出不同的分布规律,并且使得周期解呈现出不同的特性。

关 键 词:关键字:内平动齿轮系统   动力学特性   分岔   周期解   混沌 
收稿时间:2011-04-21
修稿时间:2011-08-23

Non-linear dynamic analysis of an internal parallel moving gear system
ZHAO Zi-qiang , ZHAO Li-min , CHENG Ai-ming , ZHANG Chun-lin. Non-linear dynamic analysis of an internal parallel moving gear system[J]. Journal of Vibration and Shock, 2012, 31(15): 68-74. DOI:  
Authors:ZHAO Zi-qiang    ZHAO Li-min    CHENG Ai-ming    ZHANG Chun-lin
Affiliation:1.School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;2. Department of Mathematical and Physical Science, Henan Institute of Engineering, Zhengzhou 451191, China;3. Hirain technologies, Beijing 100101, China
Abstract:Based on Lagrange equations,the dynamic model of an internal parallel moving gear transmission mechanism with two parallel moving gears distributed symmetrically was established.Through the analysis of relative displacement meshing function and dimensionless disposing,a 6 degrees of freedom dimensionless differential equation of the system was obtained.And through the analysis of the impacts on system’s dynamical characters caused by asymmetrical factors,such as asymmetry of axial bearings disposal,asymmetry of meshing clearances or asymmetry of loads on two parallel moving gears,it is indicated that all these three types of asymmetrical factors will result in bifurcation of the system.Besides,different asymmetrical factors will lead to different distribution of the chaos area and different characteristics of periodic solutions.
Keywords:internal parallel moving gear mechanism  dynamic characteristics  bifurcation  periodic solution  chaos
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《振动与冲击》浏览原始摘要信息
点击此处可从《振动与冲击》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号