首页 | 本学科首页   官方微博 | 高级检索  
     


Frequency dependence of specific airway resistance in a commercialized plethysmograph
Authors:R Peslin  C Duvivier  P Malvestio  AR Benis  JM Polu
Affiliation:Unité 14 de Physiopathologie Respiratoire, Institut National de la Santé et de la Recherche Medicale, Université Henri Poincaré, Nancy,France.
Abstract:Specific airway resistance (sRaw) measured by body plethysmography has been shown to decrease markedly with decreasing breathing frequency when the inspired air is not conditioned to body temperature, atmospheric pressure and saturation with water vapour (BTPS). The phenomenon has been attributed to noninstantaneous gas warming and wetting in the airways. The aim of this investigation was to assess whether the phenomenon was also present in a commercialized plethysmograph featuring an "electronic BTPS correction". Airway resistance (Raw) and sRaw were measured in 15 healthy subjects at six breathing frequencies ranging 0.25-3 Hz, using a constant volume plethysmograph in which a correction for non-BTPS gas conditions was applied by electronically flattening the box pressure-airway flow loop (Jaeger Masterscreen Body, version 4.0). The temperature and water vapour saturations in the box averaged 26.5 +/- 1.3 degrees C and 59 +/- 6%, respectively. Raw and sRaw exhibited a clear positive frequency dependence in all but one subject. From 0.25 to 3 Hz Raw increased from (mean+/-SD) 0.62 +/- 0.55 to 1.71 +/- 0.76 hPa x s x L-1 (p<0.001), and sRaw from 2.34 +/- 1.90 to 7.55 +/- 3.08 hPa x s (p<0.001). The data are consistent with a simple model, in which gas conditioning in the airways and external dead space occurred with a time constant of 0.39 s. We conclude that the electronic BTPS correction of the instrument was inadequate, probably because it is assumed that gas conditioning in the airways is instantaneous. We recommend that, with similar instruments, airway resistance be measured using as high a panting frequency as feasible.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号