首页 | 本学科首页   官方微博 | 高级检索  
     


Predicting weld creep strength reduction for 9% Cr steels
Authors:Stefan Holmstrm  Pertti Auerkari
Affiliation:aVTT, Espoo, Finland
Abstract:In design standards and in post-service life assessment, the cross-weld (CW) creep strength of ferritic steels is nearly universally assumed to be 80% of the corresponding value for the parent material (PH). However, CW data assessment of some 9% Cr steels such as E911 and P91 suggests that this would not hold at least at the high temperature end of the testing range. The resulting weld creep strength factor (WSF) is then attaining values well below 0.8 when extrapolated to typical design life of 100 000 h or more. Under such conditions the conventional value of 0.8 would result in non-conservative (too long) predicted life for structures subjected to CW loading in the creep regime.To accommodate the CW strength data for realistic values of WSF requires appropriate correction based on actual data. For this purpose, an alternative assessment approach, rigidity parameter correction (RPC), is proposed. This approach can be used to predict CW rupture strength from the PM master curves, with any PM rupture model optimized to correspond to the welded materials data.
Keywords:Creep  Welds  Modeling  Extrapolation  9% Cr  Ferritic steel  ECCC
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号