首页 | 本学科首页   官方微博 | 高级检索  
     

二维离散型随机变量相互独立
引用本文:张卷美 李滨予. 二维离散型随机变量相互独立[J]. 焦作工学院学报, 1997, 16(1): 77-80
作者姓名:张卷美 李滨予
作者单位:[1]焦作工学院基础部 [2]北京市经济管理干部学院
摘    要:二维离散型随机变量(X,Y)相互独立的定义是:F(x,y)=FX(x)FY(y)。其中F(x,y),FX(x),FY(y)分别为(X,Y),X,Y的分布函数。一般用等式P{X=xi,Y=yj}=P{X=xi}P{Y=yj}进行判定,其中(xi,yj)为(X,Y)所有可能取值,i=1,2,…;j=1,2,…;没有给出具体证明。本文给出二维离散型随机变量相互独立的定义及与这种判定方法等价的严格证明。

关 键 词:二维离散型随机变量  分布函数  相互独立

Independence of Two Dimensional Random Variable
Zhang Juanmei et al. //Dept. of Foundamental Courses,Jiaozuo Institute of Technology,Jiaozuo. Independence of Two Dimensional Random Variable[J]. Journal of Jiaozuo Institute of Technology(Natural Science), 1997, 16(1): 77-80
Authors:Zhang Juanmei et al. //Dept. of Foundamental Courses  Jiaozuo Institute of Technology  Jiaozuo
Affiliation:Zhang Juanmei et al. //Dept. of Foundamental Courses,Jiaozuo Institute of Technology,Jiaozuo 454000
Abstract:The independence of two dimensional random variable (X, Y) is defined by the equation F(x,y)=F X(x)·F Y(y), of which F(x,y),F X(x),F Y(y) are distribution functions to (X,Y),X and Y. The independence is generally decided with equation P{X=x i,Y=y j}=P{X=x i}P{Y=y j} , Where (x i,y j) are the values of (X, Y),i=1,2,…; j =1,2,…. Though there is no proof in any publications. The authors rigorously demonstrated that the definition of two dimensional random variable equals to the decision method.
Keywords:two dimensional random variable  distribution function  independence
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号