Abstract: | The importance of batch reactors in today's process industries cannot be overstated. Thus said, it is important to optimise their operation in order to consistently achieve products of high quality while minimising the production of undesirables. In processes like polymerisation, these reactors are responsible for a greater number of products than other reactor types and the need for optimal operation is therefore greater. An approach based on an offline dynamic optimisation and online control strategy is used in this work to generate optimal set point profiles for the batch polymerisation of methyl methacrylate. Dynamic optimisation is carried out from which controller set points to attain desired polymer molecular end point characteristics are achieved. Temperature is the main variable to be controlled, and this is done over finite discrete intervals of time. For on-line control, we evaluate the performance of neural networks in two controllers used to track the derived optimal set points for the system. The controllers are generic model control (GMC), ([P.L. Lee, G.R. Sullivan, Generic model control, Comput. Chem. Eng. 12(6) (1998) 573–580]) and the neural network-based inverse model-based control (IMBC), ([M.A. Hussain, L.S. Kershenbaum, Implementation of an inverse model based control strategy using neural networks on a partially simulated exothermic reactor, Trans. IchemE 78(A) (2000) 299–311]). Although the GMC is a model-based controller, neural networks are used to estimate the heat release within its framework for on-line control. Despite the application of these two controllers to general batch reactors, no published work exists on their application to batch polymerisation in the literature. In this work, the performance of the neural networks within each controller's algorithm for tracking and setpoint regulation of the optimal trajectory and in robustness tests on the system is evaluated. |