首页 | 本学科首页   官方微博 | 高级检索  
     

基于SLIC与分水岭算法的彩色图像分割
引用本文:侯志强, 赵梦琦, 余旺盛, 等. 基于SLIC与分水岭算法的彩色图像分割[J]. 光电工程, 2019, 46(6): 180589. doi: 10.12086/oee.2019.180589
作者姓名:侯志强  赵梦琦  余旺盛  李宥谋  马素刚
作者单位:1. 西安邮电大学计算机学院,陕西 西安 710121; 2. 西安邮电大学陕西省网络数据分析与智能处理重点实验室,陕西 西安 710121; 3. 空军工程大学信息与导航学院,陕西 西安 710077
基金项目:国家自然科学基金;国家自然科学基金
摘    要:为了克服传统分水岭算法引起的过分割问题,提出了一种基于简单线性迭代聚类(SLIC)与分水岭算法相结合的彩色图像分割算法,以获得更理想的分割效果。该算法首先利用图像复杂度计算预分割的超像素个数,并利用SLIC对原始图像进行超像素分割预处理,以减少后续处理中的冗余信息;然后,提出了一种自适应计算阈值的方法对预处理图像的梯度图像进行阈值处理,以有效去除噪声,获得较完整的轮廓信息;最后,利用分水岭分割算法对进行极小值标记提取后的图像进行分割。通过对大量图片进行实验表明,本文算法可以有效地抑制传统分水岭算法所产生的过分割问题,在LCE和GCE的对比上优于传统算法,分割质量有所提高。

关 键 词:超像素   分水岭   图像分割   图像复杂度
收稿时间:2018-11-14
修稿时间:2019-01-13

Color image segmentation based on SLIC and watershed algorithm
Hou Zhiqiang, Zhao Mengqi, Yu Wangsheng, et al. Color image segmentation based on SLIC and watershed algorithm[J]. Opto-Electronic Engineering, 2019, 46(6): 180589. doi: 10.12086/oee.2019.180589
Authors:Hou Zhiqiang  Zhao Mengqi  Yu Wangsheng  Li Youmou  Ma Sugang
Affiliation:1. School of Computer Science and Technology, Xi'an University of Post and Telecommunication, Xi'an, Shaanxi 710121, China; 2. Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121, China; 3. Information and Navigation Institute of Air Force Engineering University, Xi'an, Shaanxi 710077, China
Abstract:In order to overcome the problem of over-segmentation caused by traditional watershed algorithm, a color image segmentation algorithm based on simple linear iterative clustering (SLIC) and watershed algorithm is proposed to achieve an ideal segmentation effect. Firstly, the algorithm calculates the number of super-pixels pre-segmented by image complexity, and uses SLIC to super-pixel segmentation preprocessing of the original image to reduce the redundant information in subsequent processing. Then, an adaptive threshold calculation method is proposed to process the gradient image of the preprocessed image in order to effectively remove noise and obtain more complete contour information. Finally, the watershed segmentation algorithm is used to segment the image extracted by the minimum value marker. Experiments on a large number of images show that the proposed algorithm can effectively suppress the over-segmentation problem caused by the traditional watershed algorithm, and is superior to the traditional algorithm in the comparison of LCE and GCE, and the segmentation quality is improved.
Keywords:super pixel  watershed  image segmentation  image complexity
本文献已被 万方数据 等数据库收录!
点击此处可从《光电工程》浏览原始摘要信息
点击此处可从《光电工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号