首页 | 本学科首页   官方微博 | 高级检索  
     

化工故障诊断中基于遗传算法优化的SOM网络
引用本文:王磊,黄道. 化工故障诊断中基于遗传算法优化的SOM网络[J]. 计算机工程与应用, 2006, 42(31): 188-190
作者姓名:王磊  黄道
作者单位:华东理工大学,自动化研究所,上海,200237;华东理工大学,自动化研究所,上海,200237
摘    要:针对自组织映射神经网络(SOM)启发式训练算法中的缺陷,采用遗传算法SOM中的权重失真指数(LWDI),形成基于遗传算法优化的SOM(GA-SOM)训练算法。将GA-SOM算法应用于化工过程故障诊断,以某工厂甲醇合成反应器故障数据样本为研究对象,研究结果表明,对比基本SOM算法,GA-SOM算法对故障数据能够得到较优的分类辨识结果,且该算法实现简单,便于工程应用,对甲醇合成生产中的故障诊断有非常显著的指导作用。

关 键 词:自组织特征映射  遗传算法  故障分类  故障诊断  甲醇合成
文章编号:1002-8331(2006)31-0188-03
收稿时间:2005-11-01
修稿时间:2005-11-01

Genetic Algorithm Based SOM for Fault Diagnosis in Chemical Process
WANG Lei,HUANG Dao. Genetic Algorithm Based SOM for Fault Diagnosis in Chemical Process[J]. Computer Engineering and Applications, 2006, 42(31): 188-190
Authors:WANG Lei  HUANG Dao
Affiliation:Research Institute of Automation,ECUST, Shanghai 200237,China
Abstract:Direct optimization of "locally weighted distortion index" by Genetic Algorithm(GA) is substituted for Kohonen's heuristic-based training algorithm in SOM.The new GA-SOM algorithm is applied practically to identify and classify fault data of methanol synthesis reactor.The emulational experimental results show this algorithm can deal with complicated data,obtain better classification result and identify fault's type correctly than basic SOM algorithms,at the same time its realization is fit for scientific calculation and engineering application.And classification result can more greatly direct the optimization of methanol synthesis reactor parameters and yield monitoring.
Keywords:self-organizing map  Genetic Algorithm  fault classification  fault diagnosis  methanol synthesis
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号