A Review on the 3D Printing of Functional Structures for Medical Phantoms and Regenerated Tissue and Organ Applications |
| |
Affiliation: | 1. H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;2. School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;3. Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA |
| |
Abstract: | Medical models, or “phantoms,” have been widely used for medical training and for doctor-patient interactions. They are increasingly used for surgical planning, medical computational models, algorithm verification and validation, and medical devices development. Such new applications demand high-fidelity, patient-specific, tissue-mimicking medical phantoms that can not only closely emulate the geometric structures of human organs, but also possess the properties and functions of the organ structure. With the rapid advancement of three-dimensional (3D) printing and 3D bioprinting technologies, many researchers have explored the use of these additive manufacturing techniques to fabricate functional medical phantoms for various applications. This paper reviews the applications of these 3D printing and 3D bioprinting technologies for the fabrication of functional medical phantoms and bio-structures. This review specifically discusses the state of the art along with new developments and trends in 3D printed functional medical phantoms (i.e., tissue-mimicking medical phantoms, radiologically relevant medical phantoms, and physiological medical phantoms) and 3D bio-printed structures (i.e., hybrid scaffolding materials, convertible scaffolds, and integrated sensors) for regenerated tissues and organs. |
| |
Keywords: | 3D printing 3D bioprinting Medical phantom Regenerated tissue/organ Scaffold |
本文献已被 ScienceDirect 等数据库收录! |
|