首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度强化学习的锂电池快速充电控制策略
作者姓名:唐鑫  欧阳权  黄俍卉  王志胜  马瑞
作者单位:1. 南京航空航天大学自动化学院 南京 211106;2. 浙江科技学院自动化与电气工程学院 杭州 310023
基金项目:国家自然科学基金(61903189);中国博士后科学基金(2020M681589);中央高校基本科研业务费(NS2021023)资助项目
摘    要:安全高效的锂电池充电控制策略对于电动汽车的发展具有重要推动作用。针对锂电池的快速充电问题,提出一种综合考虑锂电池充电速度、能量损耗、安全约束多目标优化充电控制策略。基于动作-评价网络框架,利用基于近端策略优化的深度强化学习算法,训练出使得充电目标对应的奖励函数最大的充电策略神经网络和策略评估神经网络。然后,利用训练完成的充电策略神经网络根据当前电价和电池SOC智能决策出最优的充电电流。该充电控制策略的优势在于能够在保证快速充电的同时,实现充电花费最小化。同时,充电策略神经网络在线运算量较小,与基于模型的在线优化算法相比更能满足充电控制的实时性要求。最后,仿真结果表明,该充电控制策略与传统恒流-恒压法相比,具有兼顾充电速度与电费支出的优势,满足快速充电任务需求的同时,最高可降低25%的充电成本。

关 键 词:快速充电控制  充电成本优化  深度强化学习  锂电池
收稿时间:2022-02-07
点击此处可从《机械工程学报》浏览原始摘要信息
点击此处可从《机械工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号