A new anode material for intermediate solid oxide fuel cells |
| |
Authors: | Weitao Bao Hangmin GuanJihai Cheng |
| |
Affiliation: | Department of Chemistry and Materials Engineering, Hefei University, Hefei 230022, China |
| |
Abstract: | A new anode material for intermediate temperature solid oxide fuel cells (IT-SOFCs) with a composite of La0.7Sr0.3Cr1−xNixO3 (LSCN), CeO2 and Ni has been synthesized. EDX analysis showed that 1.19 at% Ni was doped into the perovskite-type La0.7Sr0.3CrO3 and Ce could not be detected in the perovskite phases. Results showed that the fine CeO2 and Ni were highly dispersed on the La0.7Sr0.3Cr1−xNixO3 substrates after calcining at 1450 °C and reducing at 900 °C. The thermal expansion coefficient (TEC) of the as-prepared anode material is 11.8 × 10−6 K−1 in the range of 30–800 °C. At 800 °C, the electrical conductivity of the as-prepared anode material calcined at 1450 °C for 5 h is 1.84 S cm−1 in air and 5.03 S cm−1 in an H2 + 3% H2O atmosphere. A single cell with yttria-stabilized zirconia (YSZ, 8 mol% Y2O3) electrolyte and the new materials as anodes and La0.8Sr0.2MnO3 (LSM)/YSZ as cathodes was assembled and tested. At 800 °C, the peak power densities of the single cell was 135 mW cm−2 in an H2 + 3% H2O atmosphere. |
| |
Keywords: | Anode Doped-LaCrO3 SOFCs |
本文献已被 ScienceDirect 等数据库收录! |
|