首页 | 本学科首页   官方微博 | 高级检索  
     


Lithium transport through a sol-gel derived LiMn2O4 film electrode: analyses of potentiostatic current transient and linear sweep voltammogram by Monte Carlo simulation
Authors:Sung-Woo KimSu-Il Pyun
Affiliation:Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Kusong-Dong, Yusong-Gu, Taejon 305-701, South Korea
Abstract:Lithium transport through a sol-gel derived LiMn2O4 film electrode was theoretically investigated by analyses of the potentiostatic current transient and the linear sweep voltammogram in consideration of the interactions between lithium ions by using Monte Carlo simulation. The anodic current transients experimentally measured on the film electrode ran with the slope of logarithmic current with logarithmic time flatter than −0.5 in the early stage, and then did in an upward concave shape in the time interval between tT1 and tT2. The linear sweep voltammograms experimentally measured on the film electrode showed two anodic peak currents Ip1 and Ip2 which increased linearly with scan rate v to the power of 0.66 and 0.70, respectively, (i.e. Ip1v0.66 and Ip2v0.70) at the scan rates higher than 0.5 mV s−1. Moreover, the higher v was, the larger appeared the positive deviations of the first and second peak potentials Ep1 and Ep2 from the first and the second transition potentials E°p1 and E°p2, respectively, in the inverse derivative of the electrode potential curve. The current transients and the linear sweep voltammograms were analyzed in consideration of the interactions between lithium ions in the electrode by using the Monte Carlo simulation under two different constraints of the diffusion-controlled lithium transport and the cell-impedance-controlled lithium transport. The current transients and the linear sweep voltammograms, theoretically calculated under the cell-impedance-controlled constraint in consideration of the interactions between lithium ions, were in good agreement with the experimental results in shape. The disorder to order phase transition in the LiMn2O4 film electrode during the cell-impedance-controlled lithium transport at the potential jump and scan was discussed with the aid of the concentration profiles and the local cross-sectional snapshots of the configuration of lithium ions simulated by the Monte Carlo method.
Keywords:Cell-impedance-controlled lithium transport  Current transient  Disorder to order phase transition  LiMn2O4 film electrode  Linear sweep voltammogram  Monte Carlo simulation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号