首页 | 本学科首页   官方微博 | 高级检索  
     

基于全局和局部特征融合的图像匹配算法研究
引用本文:朱奇光,张朋珍,李昊立,詹贤娇,陈颖. 基于全局和局部特征融合的图像匹配算法研究[J]. 仪器仪表学报, 2016, 37(1): 170-176
作者姓名:朱奇光  张朋珍  李昊立  詹贤娇  陈颖
作者单位:燕山大学信息科学与工程学院;河北省特种光纤与光纤传感重点实验室,燕山大学信息科学与工程学院,燕山大学信息科学与工程学院,燕山大学信息科学与工程学院,燕山大学电气工程学院
基金项目:国家自然科学基金(61201112)、河北省自然科学基金(F2012203169)、河北省普通高等学校青年拔尖人才计划(BJ2014056)、燕山大学青年教师自主研究计划(14LGA013)项目资助
摘    要:针对移动机器人视觉同时定位与地图构建过程中图像处理速度慢以及特征点匹配实时性和准确性差的问题,提出基于颜色特征和改进SURF算法融合的图像匹配算法。首先,采用颜色特征对图像序列进行粗匹配,选取与测试图像最相近的5幅图像作为待匹配图像;其次,改进SURF算法,用Krawtchouk矩对采用Hessian矩阵获取的关键点进行描述,计算关键点的梯度方向和幅值,得到新的特征向量,对待匹配图像提取改进SURF特征再与测试图像进行精确匹配,得到最佳匹配图像,此匹配算法提高了移动机器人图像处理的速度和精度。实验结果表明,改进算法的误匹配率降低10%左右,程序运行时间减少,在可靠性得到保证的同时适应于实时性应用。

关 键 词:vSLAM;图像匹配;SURF;Krawtchouk矩不变量;HSV

Investigation on the image matching algorithm basedon global and local feature fusion
Zhu Qiguang,Zhang Pengzhen,Li Haoli,Zhan Xianjiao and Chen Ying. Investigation on the image matching algorithm basedon global and local feature fusion[J]. Chinese Journal of Scientific Instrument, 2016, 37(1): 170-176
Authors:Zhu Qiguang  Zhang Pengzhen  Li Haoli  Zhan Xianjiao  Chen Ying
Affiliation:Institute of Information Science and Engineering, Yanshan University;Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University,Institute of Information Science and Engineering, Yanshan University,Institute of Information Science and Engineering, Yanshan University,Institute of Information Science and Engineering, Yanshan University and Institute of Electrical Engineering, Yanshan University
Abstract:Aiming at the problems of slow image processing speed, poor real-time capability and accuracy of feature point matching in mobile robot vision-based SLAM. The paper proposes a novel image matching method based on color feature and improved SURF algorithm. Firstly, color characteristics is adopted to roughly match the image sequences, and five images most similar to the test image are selected as the image to be matched. Then, the SURF algorithm is improved, the Krawtchouk moment is adopted to describe the feature points obtained using the Hessian matrix, and the gradient direction and amplitude of the feature points are calculated, and then, the new feature vector is obtained. In the image matching process, the improved SURF features are extracted from the image to be matched, which are matched with that of the test image precisely. Finally, the best matched image is obtained. This matching method improves the speed and accuracy of the mobile robot image processing. Experiment results show that the error matching rate of the proposed algorithm is decreased by about 10%, and the program running time is reduced. What''s more, this method is suitable for real-time applications while guaranteeing the reliability.
Keywords:vision-based simultaneous localization and mapping(vSLAM)   image matching   speeded up robust features(SURF)   Krawtchouk moment invariant   HSV
本文献已被 CNKI 等数据库收录!
点击此处可从《仪器仪表学报》浏览原始摘要信息
点击此处可从《仪器仪表学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号