首页 | 本学科首页   官方微博 | 高级检索  
     


FedDAA: a robust federated learning framework to protect privacy and defend against adversarial attack
Authors:Shiwei LU  Ruihu LI  Wenbin LIU
Affiliation:1. Fundamentals Department, Air Force Engineering University, Xi’an 710051, China2. Institute of Advanced Computational Science and Technology, Guangzhou University, Guangzhou 510006, China
Abstract:Federated learning (FL) has emerged to break data-silo and protect clients’ privacy in the field of artificial intelligence. However, deep leakage from gradient (DLG) attack can fully reconstruct clients’ data from the submitted gradient, which threatens the fundamental privacy of FL. Although cryptology and differential privacy prevent privacy leakage from gradient, they bring negative effect on communication overhead or model performance. Moreover, the original distribution of local gradient has been changed in these schemes, which makes it difficult to defend against adversarial attack. In this paper, we propose a novel federated learning framework with model decomposition, aggregation and assembling (FedDAA), along with a training algorithm, to train federated model, where local gradient is decomposed into multiple blocks and sent to different proxy servers to complete aggregation. To bring better privacy protection performance to FedDAA, an indicator is designed based on image structural similarity to measure privacy leakage under DLG attack and an optimization method is given to protect privacy with the least proxy servers. In addition, we give defense schemes against adversarial attack in FedDAA and design an algorithm to verify the correctness of aggregated results. Experimental results demonstrate that FedDAA can reduce the structural similarity between the reconstructed image and the original image to 0.014 and remain model convergence accuracy as 0.952, thus having the best privacy protection performance and model training effect. More importantly, defense schemes against adversarial attack are compatible with privacy protection in FedDAA and the defense effects are not weaker than those in the traditional FL. Moreover, verification algorithm of aggregation results brings about negligible overhead to FedDAA.
Keywords:federated learning  privacy protection  adversarial attacks  aggregated rule  correctness verification  
点击此处可从《Frontiers of Computer Science》浏览原始摘要信息
点击此处可从《Frontiers of Computer Science》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号