首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络和高阶统计量的滚动轴承故障分类
引用本文:张园,李力. 基于神经网络和高阶统计量的滚动轴承故障分类[J]. 轴承, 2006, 0(4): 25-30
作者姓名:张园  李力
作者单位:三峡大学,机械与材料工程学院,湖北,宜昌,443002
基金项目:湖北省宜昌市科技发展基金
摘    要:提出一种基于高阶统计量特征和BP神经网络相结合的滚动轴承故障分类方法。以滚动轴承的高阶统计量(双谱、三阶累积量)以及一些常见的无量纲指标作为轴承故障特征输入,以BP神经网络作为分类器,成功地对滚动轴承4种不同的故障进行了分类。对比RBF神经网络,尽管BP神经网络的训练速度不快,但分类效果良好。研究表明,高阶统计量和BP神经网络相结合的滚动轴承分类方法是有效的。

关 键 词:滚动轴承  故障  诊断  BP神经网络  高阶统计量  分类识别
文章编号:1000-3762(2006)04-0025-06
收稿时间:2005-12-08
修稿时间:2005-12-22

Bearing Fault Classifications Based on Nerve Network and High Order Statistics
ZHANG Yuan,LI Li. Bearing Fault Classifications Based on Nerve Network and High Order Statistics[J]. Bearing, 2006, 0(4): 25-30
Authors:ZHANG Yuan  LI Li
Affiliation:Shool of Mechanical and Material Engineering, Three Gorges University, Yuchang 443002, China
Abstract:The fault classification method for the rolling bearings is put forwards,based on combination of BP nervous networks with higher-order statistics.Taking the higher order statistics(such as bispectrum and three order cumulant)and some common dimensionless index as input values of bearing fault characteristics,the BP nervous networks as segregator,the classification of four different faults is successfully completed.The classification effect is better by comparison with RBF nervous networks,though the training speed of BP nervous networks is not so fast.The results show that it is effective to use the combination of higher-order statistics with BP nervous networks for classification of rolling bearing faults.
Keywords:rolling bearing  fault  diagnosis  BP nervous networks  higher-order statistics  classification identification
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号