首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanical and morphological investigation of virgin polyethylene and silver nanoparticle-loaded nanocomposites film: comprehensive analysis of kinetic models for non-isothermal crystallization
Authors:RAJESH KUMAR SAHOO  BISHNU PRASAD PANDA  SANJAY KUMAR NAYAK  SMITA MOHANTY
Affiliation:1.Laboratory for Advanced Research in Polymeric Materials (LARPM),Central Institute of Plastics Engineering and Technology (CIPET),Bhubaneswar,India;2.Central Institute of Plastics Engineering and Technology,Chennai,India
Abstract:This research was accomplished to examine the mechanical, morphological and crystallization kinetics study of polyethylene/silver nanoparticles (Ag-NPs) nanocomposite films. In this research, low-density polyethylene (LDPE) nanocomposite films were prepared containing Ag-NPs using maleic-anhydride-grafted low-density polyethylene (LDPE-g-MAH) as a compatibilizer by the melt mixing process. From mechanical property evaluation, it is revealed that the LDPE/LDPE-g-MAH/Ag-NPs nanocomposite films showed decreased tensile strength as compared with virgin LDPE matrix. Thermal characteristics of the prepared virgin LDPE and its nanocomposite films were studied by differential scanning calorimetry (DSC). Comprehensive analysis of different kinetic models such as the Avrami and Mo model on non-isothermal crystallization kinetics was performed in order to correlate the rate of crystallization and its various kinetic parameters. Further, the macrokinetic equation as proposed by Malkin has been applied to describe the kinetics of crystallization in the light of the Avrami equation. Concerning virgin LDPE and Ag-NP-reinforced LDPE, the former shows primary crystallization, whereas the later exhibits both primary and secondary crystallization with varying Avrami exponents. Kinetic parameters are recognized, and confirm the influence of Ag-NPs on crystallization kinetics. X-ray diffraction spectroscopy and transmission electron microscopic analysis of the nanocomposite films were conducted to verify the dispersion of inorganic filler particles in the resulting hybrids.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号