首页 | 本学科首页   官方微博 | 高级检索  
     


Ultrasonic and structural features of some borosilicate glasses modified with heavy metals
Authors:Yasser B Saddeek
Affiliation:1.Department of Physics, Faculty of Science,Al-Azhar University,Assiut,Egypt
Abstract:A quaternary glass system \(\hbox {Na}_{1.4}\hbox {B}_{2.8}\hbox {Si}_{x}\hbox {Pb}_{0.3-x}\hbox {O}_{5.2+x}\), with 0 \(\le \) x \(\le \) 0.3, was prepared and studied by Fourier transform infrared spectroscopy, density and ultrasonic techniques to debate the issue of the role of \(\hbox {SiO}_{2}\) in the structure of lead alkali borate glasses. The results indicate that \(\hbox {SiO}_{2}\) generates an abundance of bridging oxygen atoms, \(\hbox {BO}_{4}\)] and \(\hbox {SiO}_{4}\)] structural units and changes the bonds B–O–B and Pb–O–B to Si–O–Si and B–O–Si. The latter bonds have higher bond strength and higher average force constant than the former bonds. Therefore, the glass structure becomes contracted and compacted, which decreases its molar volume and increases its rigidity. This concept was asserted from the increase in the ultrasonic velocity, Debye temperature and elastic moduli with the increase of \(\hbox {SiO}_{2}\) content. The present compositional dependence of the elastic moduli was interpreted in terms of the electron–phonon anharmonic interactions and the polarization of \(\hbox {Si}^{4+}\) cation. A good correlation was observed between the experimentally determined elastic moduli and those computed according to the Makishima–Mackenzie model.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号