首页 | 本学科首页   官方微博 | 高级检索  
     


Texture Evolution in an Al-Cu-Mg Alloy During Hot Rolling
Authors:Peng Xia  Zhiyi Liu  Wenting Wu  Qi Zhao  Luqing Lu  Song Bai
Affiliation:1.Key Laboratory of Nonferrous Metal Materials Science and Engineering,Ministry of Education, Central South University,Changsha,China;2.School of Material Science and Engineering,Central South University,Changsha,China
Abstract:The texture evolution in the intermediate (the 1/4 thickness) layer of hot-rolled Al-Cu-Mg alloy sheets was investigated by the x-ray diffraction technique, electron backscattered diffraction analysis and transmission electron microscopy observation. The results showed that a texture transition from the shear texture {001}<110> to the β-fiber textures occurred as the rolling temperature increased to 420 °C. The shear strain caused by friction resulted in this strong shear texture formation at the low rolling temperature. As the rolling temperature increased, the plane strain substituting the shear strain dominated in the intermediate layer, giving rise to a significant increase in the β-fiber textures. Increasing the rolling temperature was found to preferentially activate the non-octahedral {112}<110> slip system, thereby benefiting the development of strong Brass. At the low rolling reduction of 74%, the textures with low intensity tended to converge on the α-fiber, containing Goss, Brass, P and L components. As the rolling reduction increased to 90%, the textures were strengthened and gradually flew toward the β-fiber, containing Brass, Copper and S components. The S and Copper bands were found to be the preferential sites for the development of recrystallizing Cube grains during hot rolling.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号