首页 | 本学科首页   官方微博 | 高级检索  
     


Period-robust repetitive model predictive control
Authors:Manish Gupta  Jay H. Lee  
Affiliation:School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 778 Atlantic Drive, Atlanta 30332-0100, GA, USA
Abstract:Repetitive model predictive control (RMPC) incorporates the idea of repetitive control (RC) into the basic formulation of model predictive control (MPC) to enable the user to take full advantage of the constraint handling, multivariable control features of MPC in controlling a periodic process. The RMPC achieves perfect asymptotic setpoint tracking/disturbance rejection in periodic processes, provided that the period length used in the control formulation matches the actual period of the reference/disturbance signal exactly. Even a small mismatch between the actual period of the process and the controller period can deteriorate the RMPCs performance significantly. The period mismatch can occur either from an inaccurate estimation of the actual frequency of disturbance due to resolution limit or from trying to force the controller period to be an integer multiple of the sampling time. For such cases, an extension of RMPC called “period-robust” repetitive model predictive control (pr-RMPC) is proposed. It is based on the idea of using weighted, multiple memory loops in RC, such that small changes in period length do not diminish the tracking/rejection properties by much. Simulation results show that, in case of a slight period mismatch, pr-RMPC achieves significant improvement over the standard RMPC in rejecting periodic disturbances.
Keywords:Model predictive control   Repetitive control   Periodic signals   Period mismatch
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号