首页 | 本学科首页   官方微博 | 高级检索  
     

飞机APU涡轮导向叶片高温防护涂层失效模式分析
引用本文:王璐璐,刘延宽,费宇杰,王源生,战金滢,王志平.飞机APU涡轮导向叶片高温防护涂层失效模式分析[J].稀有金属材料与工程,2023,52(2):470-477.
作者姓名:王璐璐  刘延宽  费宇杰  王源生  战金滢  王志平
作者单位:沈阳工业大学,辽宁 沈阳 110870;中国南方航空公司,辽宁 沈阳 110169,中国民航大学 天津市民用航空器适航与维修重点实验室,天津 300300,中国民航大学 天津市民用航空器适航与维修重点实验室,天津 300300,中国民航大学 天津市民用航空器适航与维修重点实验室,天津 300300,中国民航大学 天津市民用航空器适航与维修重点实验室,天津 300300,沈阳工业大学,辽宁 沈阳 110870;中国民航大学 天津市民用航空器适航与维修重点实验室,天津 300300
基金项目:Scientific Research Project of Tianjin Municipal Education Commission (2020KJ016); Central University Basic Scientific Research Operation Cost Special Fund of Civil Aviation University of China (3122020065)
摘    要:利用扫描电镜(SEM)、能谱分析仪(EDS)等分析了国内某型在役APU涡轮导向叶片的结构特征与热防护机理,研究了叶片失效件中高温防护涂层的厚度变化与失效模式。结果表明:飞机APU导向叶片中存在渗铝涂层+MCrAlY涂层与单一渗铝涂层2种不同的涂层结构;APU导向叶片失效件的MCrAlY涂层厚度从叶片尾缘—叶盆—前缘区域呈先增大后减小的趋势;受叶片构型影响,叶片尾缘区域涂层的氧化程度较严重,而叶盆区域越靠近前缘的位置涂层氧化损伤程度越低,但叶片前缘区域由于受CMAS腐蚀与高温氧化的耦合作用使得该区域涂层损伤最为严重。

关 键 词:涡轮导向叶片  高温防护涂层  MCrAlY  高温氧化  CMAS腐蚀
收稿时间:2022/5/6 0:00:00
修稿时间:2023/2/3 0:00:00

Failure Modes of High Temperature Protective Coating for Aircraft APU Turbine Guide Vanes
Wang Lulu,Liu Yankuan,Fei Yujie,Wang Yuansheng,Zhan Jinying and Wang Zhiping.Failure Modes of High Temperature Protective Coating for Aircraft APU Turbine Guide Vanes[J].Rare Metal Materials and Engineering,2023,52(2):470-477.
Authors:Wang Lulu  Liu Yankuan  Fei Yujie  Wang Yuansheng  Zhan Jinying and Wang Zhiping
Affiliation:Shenyang University of Technology, Shenyang 110870, China;China Southern Airlines, Shenyang 110169, China,Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance, Civil Aviation University of China, Tianjin 300300, China,Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance, Civil Aviation University of China, Tianjin 300300, China,Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance, Civil Aviation University of China, Tianjin 300300, China,Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance, Civil Aviation University of China, Tianjin 300300, China,Shenyang University of Technology, Shenyang 110870, China;Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance, Civil Aviation University of China, Tianjin 300300, China
Abstract:The structural characteristics and thermal protection mechanism of a certain type of auxiliary power unit (APU) turbine guide vane in service were analyzed by scanning electron microscope (SEM) and energy dispersive analyzer (EDS). Then, the thickness variation and failure mode of the high temperature protective coating after removal from aircraft were investigated. The results show that there are two different coating structures in the aircraft APU guide vanes: aluminized coating+MCrAlY coating and mono aluminized coating. The MCrAlY coating thickness of the scrapped APU guide vane components increases first and then decreases from the area of trailing edge to the pressure side and then to the leading edge. Affected by the configuration and the service environment of APU guide vanes, the coatings at the trailing edge and pressure side present an oxidation-predominant damage mode. The oxidation degree of the coating on the trailing edge is more serious, while the closer the pressure-side region to the leading edge, the less severe the oxidative damage. However, due to the coupling effect of CMAS (CaO, MgO, Al2O3, SiO2) corrosion and high temperature oxidation, the damage to the coating at the leading edge of vanes is the most serious.
Keywords:turbine guide vane  high temperature protective coating  MCrAlY  high temperature oxidation  CMAS corrosion
点击此处可从《稀有金属材料与工程》浏览原始摘要信息
点击此处可从《稀有金属材料与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号