首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF神经网络与模糊控制的短期负荷预测
引用本文:刘昊,张艳,高鑫,舒菲. 基于RBF神经网络与模糊控制的短期负荷预测[J]. 电网与清洁能源, 2009, 25(10): 62-66
作者姓名:刘昊  张艳  高鑫  舒菲
作者单位:西安建筑科技大学?城市规划设计研究院,?西安?710055;甘肃省电力公司,兰州?730050;西北电网有限公司,西安?710048;中国建筑西北设计研究院有限公司,?西安?710003
摘    要:针对电力系统短期负荷预测,综合考虑温度、日期类型和天气等因素对短期电力负荷的影响,建立了径向基函数(Radial?Basis?Function,RBF)神经网络和模糊控制相结合的短期负荷预测模型。该模型利用RBF神经网络的非线性逼近能力对预测日负荷进行了预测,并采用在线自调整因子的模糊控制对预测误差进行在线智能修正。实际算例表明RBF神经网络与模糊控制相结合提高了预测精度。

关 键 词:短期负荷预测;径向基函数神经网络;模糊控制

Short-Term Load Forecasting Based on Radial Basis Function Neural Networks and Fuzzy Control
LIU?Hao,ZHANG?Yan,GAO?Xin and SHU?Fe. Short-Term Load Forecasting Based on Radial Basis Function Neural Networks and Fuzzy Control[J]. Power system and clean energy, 2009, 25(10): 62-66
Authors:LIU?Hao  ZHANG?Yan  GAO?Xin  SHU?Fe
Abstract:Aiming at short-term load forecasting of power system, considering the factors such as temperature, date type, weather status,etc, which influence the short-term electric load forecasting, a model is set up by combining Radial Basis Function(RBF)neural network with fuzzy control. The model forecasts the daily load by the nonlinear approaching capacity of the RBF neural network, than corrects the errors by on-line self-tuning factors of fuzzy control.The actual simulation shows that the method combining fuzzy control with neural network improves forecasting accuracy.
Keywords:RBF neural network   fuzzy control
点击此处可从《电网与清洁能源》浏览原始摘要信息
点击此处可从《电网与清洁能源》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号