首页 | 本学科首页   官方微博 | 高级检索  
     

基于MCQRDDC的负荷概率预测模型
引用本文:丁美荣,张航,蔡高琰,李宇轩,温兴,严彬彬,曾碧卿. 基于MCQRDDC的负荷概率预测模型[J]. 计算机系统应用, 2023, 32(2): 281-287
作者姓名:丁美荣  张航  蔡高琰  李宇轩  温兴  严彬彬  曾碧卿
作者单位:华南师范大学 软件学院, 佛山 528225;华南师范大学 软件学院, 佛山 528225;广东浩迪创新科技有限公司, 佛山 528299
摘    要:针对具有约束性的复合分位数回归网络(monotone composite quantile regression neural network, MCQRNN)无法较好地分析负荷数据之中的时序信息和内在规律的问题,本研究融合MCQRNN以及膨胀因果卷积网络(dilated causal convolutional networks, DCC),提出了一种新的分位数回归模型MCQRDCC (monotone composite quantile regression dilated causal convolutional networks),该模型将输入划分为分位点输入与非约束输入,使该模型的输出随分位点的增大而增大,以此解决分位数交叉的问题.同时,使用DCC的结构,使该模型充分地分析负荷数据之中的序列信息,使得预测结果更加符合真实负荷的变化趋势.此外, MCQRNN使用指数函数对约束权重矩阵和隐藏层权重进行转化,会影响反向传播时权重的调整,本研究使用ReLU函数代替指数函数可以解决这个问题,以此提高预测的精度.使用真实的负荷数据进行实验,实验结果表明, MCQRDCC能有效地提高预测...

关 键 词:负荷概率预测  分位数回归  分位数交叉  膨胀因果卷积网络  MCQRNN
收稿时间:2022-06-22
修稿时间:2022-07-25

Probabilistic Load Forecasting Model Based on MCQRDDC
DING Mei-Rong,ZHANG Hang,CAI Gao-Yan,LI Yu-Xuan,WEN Xing,YAN Bin-Bin,ZENG Bi-Qing. Probabilistic Load Forecasting Model Based on MCQRDDC[J]. Computer Systems& Applications, 2023, 32(2): 281-287
Authors:DING Mei-Rong  ZHANG Hang  CAI Gao-Yan  LI Yu-Xuan  WEN Xing  YAN Bin-Bin  ZENG Bi-Qing
Affiliation:School of Software, South China Normal University, Foshan 528225, China;School of Software, South China Normal University, Foshan 528225, China;Hodi Technology Co. Ltd., Foshan 528299, China
Abstract:Monotone composite quantile regression neural network (MCQRNN) cannot analyze the time series information and internal laws in load data well. In order to address this issue, this study combines MCQRNN and dilated causal convolutional networks (DCC) and proposes a new quantile regression model named, MCQRDCC. This model divides the input into quantile input and unconstrained input to make the output of the model increase with the increase in quantile, so as to solve the problem of quantile crossing. At the same time, the DCC structure is used to help the model fully analyze the sequence information in the load data and make the prediction results more in line with the changing trend of the real load. In addition, MCQRNN utilizes the exponential function to transform the constraint weight matrix and the hidden layer weight, which will affect the weight adjustment during backpropagation. In this study, the ReLU function is used instead of the exponential function to solve this problem and improve the prediction accuracy, and real load data is adopted for experiments. The experimental results show that MCQRDCC can effectively improve prediction accuracy. Compared with those of MCQRNN, the average Pinball loss and CWC of MCQRDCC are decreased by 2.11% and 9.31%, respectively, and AIS is increased by 10.51%.
Keywords:probabilistic load forecasting  quantile regression  quantile crossover  dilated causal convolutional networks (DCC)  monotone composite quantile regression neural network (MCQRNN)
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号