首页 | 本学科首页   官方微博 | 高级检索  
     


Combining physiologically based pharmacokinetic modeling with Monte Carlo simulation to derive an acute inhalation guidance value for trichloroethylene
Authors:TW Simon
Affiliation:U.S. Environmental Protection Agency, Atlanta Federal Center, Georgia 30303-3104, USA.
Abstract:Using the Monte Carlo method and physiologically based pharmacokinetic modeling, an occupational inhalation exposure to trichloroethylene consisting of 7 h of exposure per day for 5 days was simulated in populations of men and women of 5000 individuals each. The endpoint of concern for occupational exposure was drowsiness. The toxicologic condition leading to drowsiness was assumed to be high levels of both trichloroethanol and trichloroethylene. Therefore, the output of the simulation or dose metric was the maximum value of the sum of the concentration of trichloroethylene in blood and the concentration of trichloroethanol within its volume of distribution occurring within 1 week of exposure. The distributions of the dose metric in the simulated populations were lognormal. To protect 99% of a worker population, a concentration of 30 ppm over a 7-h period of the work day should not be exceeded. Subjecting a susceptible individual (the 99th percentile of the dose metric) to 200 ppm (the ACGIH short-term exposure limit or STEL) for 15 min twice a day over a work week necessitates a 2.5-h rest in fresh air following the STEL exposure to allow the blood concentrations of trichloroethylene and trichloroethanol to drop to levels that would not cause drowsiness. Both the OSHA PEL and the ACGIH TLV are greater than the value of 30 ppm derived here. As well as suggesting a new occupational guidance value, this study provides an example of this method of guidance value derivation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号