首页 | 本学科首页   官方微博 | 高级检索  
     


Nucleotide binding to the C-terminal nucleotide binding domain of ArsA. Studies with an ATP analogue, 5'-p-fluorosulfonylbenzoyladenosine
Authors:S Ramaswamy  P Kaur
Affiliation:Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA.
Abstract:ArsA protein, the catalytic component of the plasmid-encoded anion-translocating ATPase in Escherichia coli, contains two consensus nucleotide binding domains, A1 and A2, that are connected by a flexible linker. ATP has previously been shown to cross-link to the A1 domain upon activation with UV light but not to the A2 domain. The ATP analogue, 5'-p-fluorosulfonylbenzoyladenosine (FSBA) was used to probe the nucleotide binding domains of ArsA. The covalently labeled protein was subjected to partial trypsin proteolysis, followed by Western blot analysis of the fragments with the anti-FSBA serum. The N-terminal amino acid sequence of the labeled fragment showed that FSBA binds preferentially to the C-terminal domain A2 both in the absence and the presence of antimonite. Occupancy of the two nucleotide binding sites was determined by protection from trypsin proteolysis. Trypsin cleaved the ArsA protein at Arg290 in the linker to generate a 32-kDa N-terminal and a 27-kDa C-terminal fragment. The 32-kDa fragment is compact and largely inaccessible to trypsin; however, the 27-kDa was cleaved further. Incubation with FSBA, which binds to the C-terminal domain, resulted in significant protection of the 27-kDa fragment. This fragment was not protected upon incubation with ATP alone, indicating that A2 might be unoccupied. However, upon incubation with ATP and antimonite, almost complete protection from trypsin was seen. ATP and FSBA together mimicked the effect of ATP and antimonite, implying that this fully protected conformation might be the result of both sites occupied with the nucleotide. It is proposed that the A1 site in ArsA is a high affinity ATP site, whereas the allosteric ligand antimonite is required to allow ATP binding to A2, resulting in catalytic cooperativity. Thus antimonite binding may act as a switch in regulating ATP binding to A2 and hence the ATPase activity of ArsA.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号