首页 | 本学科首页   官方微博 | 高级检索  
     

餐厨垃圾水解液分批培养酿酒酵母产油脂动力学模型的建立
引用本文:孙士权,蒋昌波,周谦,刘青芝,谭万春,聂小保,万俊力,余关龙. 餐厨垃圾水解液分批培养酿酒酵母产油脂动力学模型的建立[J]. 现代食品科技, 2014, 30(8): 163-168
作者姓名:孙士权  蒋昌波  周谦  刘青芝  谭万春  聂小保  万俊力  余关龙
作者单位:长沙理工大学水利工程学院,水沙科学与水灾害防治湖南省重点实验室,湖南长沙 410114;长沙理工大学水利工程学院,水沙科学与水灾害防治湖南省重点实验室,湖南长沙 410114;长沙理工大学水利工程学院,水沙科学与水灾害防治湖南省重点实验室,湖南长沙 410114;长沙理工大学水利工程学院,水沙科学与水灾害防治湖南省重点实验室,湖南长沙 410114;长沙理工大学水利工程学院,水沙科学与水灾害防治湖南省重点实验室,湖南长沙 410114;长沙理工大学水利工程学院,水沙科学与水灾害防治湖南省重点实验室,湖南长沙 410114;长沙理工大学水利工程学院,水沙科学与水灾害防治湖南省重点实验室,湖南长沙 410114;长沙理工大学水利工程学院,水沙科学与水灾害防治湖南省重点实验室,湖南长沙 410114
基金项目:国家自然科学基金资助项目(51309032)
摘    要:为提高餐厨垃圾水解液发酵产油脂量,探究其发酵生产规律,以Saccharomyces cerevisiae As2.516为供试菌株,以初始餐厨垃圾水解液加入量90%(V/V)、接种量10%(V/V)、初始pH值6、培养温度30℃、搅拌速率180 r/min、通气量2.5 L/min、发酵周期10 d为基础发酵条件进行1 L发酵罐批式发酵。实验结果表明:S.cerevisiae As2.516发酵过程中菌体生物量的积累呈一条S型曲线,油脂的生产表达与菌体的生长有紧密关联性。基于Logistic方程、Luedeking-Piret方程和物料平衡计算分别构建了该菌株的菌体生长、油脂产物生成、底物还原糖消耗3个分批发酵动力学模型,其中菌体生长动力学模型为:1.0241(1)13.05??dx x xdt、底物还原糖消耗动力学模型为:??0.4787?0.0348?0.1055ds dx dp xdt dt dt、油脂产物生成动力学模型为:?0.2979?0.00406dp dx xdt dt,所构建动力学模型的计算值与实验值拟合效果良好,其相关系数R2分别为0.9979、0.9957和0.9565,模型能揭示餐厨垃圾水解液培养菌体产油脂发酵过程中菌体生长、油脂合成以及底物还原糖消耗的基本特征。

关 键 词:餐厨垃圾水解液  发酵  微生物油脂  动力学
收稿时间:2014-02-17

Construction of Kinetics Model for Production of Microbial Oils by Saccharomyces Cerevisiae As2.516 Fermentation Process Using Hydrolysis Liquid of Kitchen Garbage
SUN Shi-quan,JIANG Chang-bo,ZHOU Qian,LIU Qing-zhi,TAN Wan-chun,NIE Xiao-bao,WAN Jun-li and YU Guan-long. Construction of Kinetics Model for Production of Microbial Oils by Saccharomyces Cerevisiae As2.516 Fermentation Process Using Hydrolysis Liquid of Kitchen Garbage[J]. Modern Food Science & Technology, 2014, 30(8): 163-168
Authors:SUN Shi-quan  JIANG Chang-bo  ZHOU Qian  LIU Qing-zhi  TAN Wan-chun  NIE Xiao-bao  WAN Jun-li  YU Guan-long
Affiliation:School of Hydraulic Engineering, Changsha University of Science and Technology, The Water Wand Science and the Water DisasterPrevent and Control, Key Laboratory of Hunan Province, Changsha 410114, China;School of Hydraulic Engineering, Changsha University of Science and Technology, The Water Wand Science and the Water DisasterPrevent and Control, Key Laboratory of Hunan Province, Changsha 410114, China;School of Hydraulic Engineering, Changsha University of Science and Technology, The Water Wand Science and the Water DisasterPrevent and Control, Key Laboratory of Hunan Province, Changsha 410114, China;School of Hydraulic Engineering, Changsha University of Science and Technology, The Water Wand Science and the Water DisasterPrevent and Control, Key Laboratory of Hunan Province, Changsha 410114, China;School of Hydraulic Engineering, Changsha University of Science and Technology, The Water Wand Science and the Water DisasterPrevent and Control, Key Laboratory of Hunan Province, Changsha 410114, China;School of Hydraulic Engineering, Changsha University of Science and Technology, The Water Wand Science and the Water DisasterPrevent and Control, Key Laboratory of Hunan Province, Changsha 410114, China;School of Hydraulic Engineering, Changsha University of Science and Technology, The Water Wand Science and the Water DisasterPrevent and Control, Key Laboratory of Hunan Province, Changsha 410114, China;School of Hydraulic Engineering, Changsha University of Science and Technology, The Water Wand Science and the Water DisasterPrevent and Control, Key Laboratory of Hunan Province, Changsha 410114, China
Abstract:
Keywords:kitchen garbage hydrolysis   fermentation   microbial oils   kinetics
本文献已被 CNKI 等数据库收录!
点击此处可从《现代食品科技》浏览原始摘要信息
点击此处可从《现代食品科技》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号