首页 | 本学科首页   官方微博 | 高级检索  
     

基于知识蒸馏的钢铁高炉煤气系统建模方法
引用本文:金锋,陈薇琳,赵博识,赵珺,王伟. 基于知识蒸馏的钢铁高炉煤气系统建模方法[J]. 控制理论与应用, 2024, 41(3): 428-435
作者姓名:金锋  陈薇琳  赵博识  赵珺  王伟
作者单位:大连理工大学,大连理工大学,马鞍山钢铁股份有限公司,大连理工大学,大连理工大学
基金项目:国家重点研发计划项目(2017YFA0700300), 国家自然科学基金项目(62125302, 61833003, U1908218, 62103075), 辽宁省“兴辽英才计划”项目 (XLYC2002087), 大连市科技人才创新支持计划项目(2022RG03)资助.
摘    要:钢铁企业高炉煤气系统具有波动性大、时变性强、不确定性高等特点,对其未来产消趋势进行准确的建模预测有助于企业的高效决策与节能减排.文章提出了一种基于知识蒸馏的高炉煤气系统建模方法,为了提高训练过程中的拟合精度,在教师网络中建立了基于长短期记忆网络的序列到序列模型来提取样本的中间特征.进而,提出了融入教师模型中间特征的知识蒸馏策略,建立了考虑中间特征蒸馏损失与预测均方误差的损失函数,对知识蒸馏过程及预测偏差进行评估.通过国内大型钢铁企业高炉煤气系统实际运行数据的实验验证,表明了本文所提建模方法的有效性,可为后续的能源系统优化调度提供支撑.

关 键 词:知识蒸馏  时间序列  高炉煤气系统  钢铁企业
收稿时间:2022-09-30
修稿时间:2024-01-18

A knowledge distillation-based modeling method for blast furnace gas system in steel industry
JIN Feng,CHEN Wei-lin,ZHAO Bo-shi,ZHAO Jun and WANG Wei. A knowledge distillation-based modeling method for blast furnace gas system in steel industry[J]. Control Theory & Applications, 2024, 41(3): 428-435
Authors:JIN Feng  CHEN Wei-lin  ZHAO Bo-shi  ZHAO Jun  WANG Wei
Affiliation:Dalian University of Technology,Dalian University of Technology,Maanshan Iron &Steel Co, Ltd,Dalian University of Technology,Dalian University of Technology
Abstract:Blast furnace gas system in steel enterprises has the characteristics of high volatility, time-variability and greatuncertainty, accurately modeling of its future generation and consumption flow plays a crucial role in efficiently decisionmaking,energy-saving and emissions reduction. In this study, a knowledge distillation-based modelling method for blastfurnace gas system is proposed. Based on a long and short-term memory network, a sequence-to-sequence model is builtin the teacher network to extract the intermediate features of the samples. And then, a knowledge distillation strategy isconstructed which incorporates the intermediate features of the teacher model. Besides, in order to evaluate the capabilityof feature extraction, a new loss function is established by both considering that of the knowledge distillation process andthe regression error of the actual energy data. Validation experiments are carried out by employing real-world data fromthe blast furnace gas system of a typical steel enterprise, and the results indicate the effectiveness of the proposed methodwhen facing with the modeling problem, so as to provide powerful support for the optimal scheduling of the energy system.
Keywords:knowledge distillation   time series   blast furnace gas system   steel industry
点击此处可从《控制理论与应用》浏览原始摘要信息
点击此处可从《控制理论与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号