首页 | 本学科首页   官方微博 | 高级检索  
     

基于CNN-LFM模型的个性化推荐
引用本文:梁昌勇,范汝鑫,陆文星,赵树平. 基于CNN-LFM模型的个性化推荐[J]. 计算机仿真, 2020, 0(3): 399-404
作者姓名:梁昌勇  范汝鑫  陆文星  赵树平
作者单位:合肥工业大学管理学院
基金项目:国家自然科学基金项目(71331002,71771075,71771077,71601061)。
摘    要:评分数据的稀疏性和新物品的冷启动问题一直是阻碍推荐系统发展的难题。针对这些问题,利用物品的图像数据作为辅助信息以提高评分预测的准确性,提出一种基于卷积神经网络与隐语义模型的推荐模型(CNN-LFM)。CNN-LFM模型利用隐语义模型挖掘评分数据,获得用户和物品的潜在特征,其中物品的潜在特征会在卷积神经网络提取的图像特征的约束下不断完善。在真实数据集下进行实验,对结果的定量和定性分析表明CNN-LFM模型不存在新物品的冷启动问题,即使当评分数据十分稀疏时,其性能也远远优于其它推荐模型。

关 键 词:卷积神经网络  个性化推荐  评分数据  隐语义模型  图像数据  推荐模型  潜在特征  CNN

Personalized Recommendation Based on CNN-LFM Model
LIANG Chang-yong,FAN Ru-xin,LU Wen-xin,ZHAO Shu-ping. Personalized Recommendation Based on CNN-LFM Model[J]. Computer Simulation, 2020, 0(3): 399-404
Authors:LIANG Chang-yong  FAN Ru-xin  LU Wen-xin  ZHAO Shu-ping
Affiliation:(College of Management,Hefei University of Technology,Hefei Anhui 230009,China)
Abstract:The sparseness of rating data and the cold start of new items have been problems that hamper the development of recommendation systems.To solve these problems,the image data of the item were applied as auxiliary information to improve the accuracy of the rating prediction in this article,and a recommendation model based on conv?olutional neural network and latent factor model(CNN-LFM)was proposed.The CNN-LFM model used the latent factor model to mine rating data to obtain potential features of users and items,and the latent factors of the items can be continuously improved under the constraint of image features extracted from the convolutional neural network.Experiments were conducted based on real data sets.Quantitative and qualitative analyses of the results show that there is no cold start problem for new items in this method.Even if the rating data is highly sparse,the performance of CNN-LFM is much better than other recommendation models.
Keywords:Convolutional neural network(CNN)  Latent factor model(LFM)  Image feature  Data sparsity  Cold start
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号