首页 | 本学科首页   官方微博 | 高级检索  
     

神经网络在混凝土多轴强度预测中的应用
引用本文:王怀亮,宋玉普. 神经网络在混凝土多轴强度预测中的应用[J]. 沈阳建筑工程学院学报(自然科学版), 2006, 22(1): 61-64
作者姓名:王怀亮  宋玉普
作者单位:大连理工大学海岸和近海工程国家重点实验室,辽宁大连116024
摘    要:目的 采用人工神经网络技术来处理混凝土多轴强度间的非线性关系.方法 运用BP网络模型对混凝土多轴强度试验数据进行分析,并与数学回归模型进行了比较.结果 研究表明。只要选取合适的隐层节点个数和最优化的网络结构,建立的神经网络模型可以合理地模拟具有复杂非线性关系的混凝土多轴强度模型.结论 该方法具有较高的预测能力,可以作为混凝土多轴强度准则研究的有益途径。

关 键 词:混凝土  多轴强度预测  神经网络  回归模型
文章编号:1671-2021(2006)01-0061-04
修稿时间:2005-07-03

The Application of Artificial Neural Networks in Prediction of Multiaxial Strength of Concrete
WANG Huai-liang,SONG Yu-pu. The Application of Artificial Neural Networks in Prediction of Multiaxial Strength of Concrete[J]. Journal of Shenyang Archit Civil Eng Univ: Nat Sci, 2006, 22(1): 61-64
Authors:WANG Huai-liang  SONG Yu-pu
Abstract:The strength of concrete under multiaxial stresses is a function of the stress state.It is quite difficult to create a precise mathematical expression of the strength surface since the surface is a complex three-dimensional one.The artificial neural network is regarded as a good tool to model the highly nonlinear systems,so in this study,the back propagation neural network(BPNN)is used for training and testing the multiaxial experimental data of concrete from document[9].When choosing the appropriate number of hidden nodes and the optimal architecture of the network,the artificial neural network is effective in predicting the multiaxial strength.Finally,the conclusion is drawn that compared with regression-based strength models,the neural network approach provides better results as well as a new way for the further study of the failure criterion of concrete.
Keywords:concrete  multiaxial strength  artificial neural network  regression model
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号