首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的纳米MOSFET载流子密度量子更正
引用本文:李尊朝,蒋耀林,张瑞智.基于神经网络的纳米MOSFET载流子密度量子更正[J].半导体学报,2006,27(3).
作者姓名:李尊朝  蒋耀林  张瑞智
作者单位:西安交通大学电子与信息工程学院,西安,710049;西安交通大学理学院,西安,710049
基金项目:中国科学院资助项目,科技部科研项目
摘    要:为了处理纳米MOSFET载流子分布的量子效应,提出了基于Levenberg-Marquardt BP神经网络的量子更正模型,通过载流子的经典密度计算其量子密度,并对拥有不同隐层数和隐层神经元数的神经网络的训练速度和精度进行了研究.结果表明:含有2个隐层的神经网络具有高的训练速度和精度,但隐层神经元数对速度和精度的影响并不明显;对于单栅和双栅纳米MOSFET,其载流子量子密度可以通过神经网络进行快速计算,其结果与Schrodinger-Poisson方程的吻合程度很高.

关 键 词:神经网络  量子更正  纳米MOSFET  电荷密度

Neural-Network-Based Charge Density Quantum Correction of Nanoscale MOSFETs
Li Zunchao,Jiang Yaolin,Zhang Ruizhi.Neural-Network-Based Charge Density Quantum Correction of Nanoscale MOSFETs[J].Chinese Journal of Semiconductors,2006,27(3).
Authors:Li Zunchao  Jiang Yaolin  Zhang Ruizhi
Abstract:For the treatment of the quantum effect of charge distribution in nanoscale MOSFETs, a quantum correction model using Levenberg-Marquardt back-propagation neural networks is presented that can predict the quantum density from the classical density. The training speed and accuracy of neural networks with different hidden layers and numbers of neurons are studied. We conclude that high training speed and accuracy can be obtained using neural networks with two hidden layers, but the number of neurons in the hidden layers does not have a noticeable effect. For single and double-gate nanoscale MOSFETs, our model can easily predict the quantum charge density in the silicon layer,and it agrees closely with the Schrodinger-Poisson approach.
Keywords:neural network  quantum correction  nanoscale MOSFET  charge density
本文献已被 万方数据 等数据库收录!
点击此处可从《半导体学报》浏览原始摘要信息
点击此处可从《半导体学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号