首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental investigation of yield behaviour of metal powder compacts
Abstract:Abstract

In this paper the compaction and yield response of two steel and two copper powders are examined. These were chosen to determine how the material response depends on the type of material and the morphology of the powder particles. Experiments were conducted in a computer controlled triaxial cell. Here, concentration is on the response during simulated, frictionless closed die compaction, whereby the radial stress is controlled so as to keep the radius of the sample constant. The compaction process was stopped at regular intervals and a series of probing paths were followed in stress space to construct the yield surface for the compact.

The experimentally determined yield surfaces are compared with yield surfaces predicted by empirical models and micromechanical models of the Fleck type, which assume that the compact consists of monosized spherical particles. During the early stages of compaction the form of the yield surfaces for spherical powders are consistent with Fleck's micromechanical model, but the surfaces become less elongated in the direction of loading at high densities. The yield surfaces for irregular shaped powders are significantly different from the predictions of the Fleck micromechanical model. A modified anisotropic Cam-Clay model is proposed, which is able to predict yield surfaces for the four powders at all densification levels.
Keywords:POWDER METALLURGY  WEAR RESISTANCE  POROUS TITANIUM  SINTERING INDEX  MICROHARDNESS 2
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号