首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical simulation of metal powder die compaction with special consideration of cracking
Authors:Chen C-C  Hourng L-W  Liou L-M
Abstract:Abstract

Powder die compaction is modelled using the finite element method and a phenomenological material model. The Drucker–Prager cap model is modified with the goal to describe the formation of cracks during powder transfer, compaction, unloading, and ejection of the parts from the die. This is achieved by considering the cohesive strength and the cohesion slope, which characterise the current strength of the powder compact in the Drucker–Prager model, as state dependent variables. Evolution equations are formulated for these variables, so that the strength increases by densification and decreases by forced shear deformation. Some of the parameters appearing in the evolution equations are determined from measured green strength values. An iron based powder (Distaloy AE) is used for the experiments. Examples are shown to demonstrate that the density distribution can be calculated accurately as compared with an experiment, that cracking can be modelled at least qualitatively correctly, and that the compaction of complex 3D parts can be simulated.
Keywords:GAS ATOMISING  WATER ATOMISING  METAL INJECTION MOULDING  HEAT SINKS  CU POWDER
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号