首页 | 本学科首页   官方微博 | 高级检索  
     


The Fermi Liquid theory of4He in3He
Authors:D. O. Edwards  M. S. Pettersen  T. G. Culman
Affiliation:(1) Physics Department, The Ohio State University, 43210 Columbus, Ohio
Abstract:The Zharkov-Silin Fermi Liquid theory of solutions of4He in normal (non-superfluid) liquid3He is reviewed and slightly extended. The theory is expected to be valid only below sim0.1 K, and it predicts that there should be a hundred-fold increase in the diffusion coefficient as the temperature is lowered into this region. The limited range of validity explains the apparent disagreement between the recent very low temperature measurements of the phase separation line by Nakamura et al. and extrapolations from higher temperatures. In the low temperature experiments the4He concentration X4 is so small that there is no macroscopic phase separation, only a gradual thickening of the4He-rich film on the walls. We confirm that the phase separation temperature Tps(X4) estimated from the thickening is close to the values which would be observed in an ideal experiment with a macroscopic phase. Fits to Tps(X4) including the new data show that the4He effective mass m4* is close to, and may be equal to, the bare mass m4. The difference in binding at zero pressure between4He in liquid4He and in liquid3He is (E44–EE43)/kB=(0.21+0.03/–0.01)) K. Using the volume measurements of Laheurte to calculate the pressure dependence of E43 indicates that the difference in binding has a minimum of (0.0±0.2) K near sim11 atm. This implies that the solubility of4He in3He is enhanced in this region of pressure. The behavior of the spinodal line at low temperature, and the possibility of observing Bose condensation in a metastable solution of4He in liquid3He are also discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号