Center for Composite Materials, University of Delaware, Newark, DE 19716, USA
Department of Materials Science and Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL 60208, USA
Abstract:
Time-dependent damage (matrix cracks) evolution in AS4/3501-6 cross-ply laminates was studied using constant strain rate and constant stress tests. First ply failure stress and strain as well as the matrix crack density at a given stress level were found to be strongly dependent on strain rate. Matrix crack density increased with creep time at a constant stress level. The compliance and creep rate of the laminate increased in the presence of these cracks. These results emphasize the importance of the knowledge of time-dependent damage evolution in a lamina/laminate of a polymer composite for reliable prediction of creep and creep rupture.