首页 | 本学科首页   官方微博 | 高级检索  
     

多任务联盟形成中的Agent行为策略研究
引用本文:蒋建国,苏兆品,张国富,夏 娜. 多任务联盟形成中的Agent行为策略研究[J]. 控制理论与应用, 2008, 25(5): 853-856
作者姓名:蒋建国  苏兆品  张国富  夏 娜
作者单位:合肥工业大学,计算机与信息学院,安徽,合肥,230009;安全关键工业测控技术教育部工程研究中心,安徽,合肥,230009
基金项目:国家自然科学基金,高等学校博士学科点专项科研项目,安徽省自然科学基金
摘    要:Agent联盟是多Agent系统中一种重要的合作方式,联盟形成是其研究的关键问题.本文提出一种串行多任务联盟形成中的Agent行为策略,首先论证了Agent合作求解多任务的过程是一个Markov决策过程,然后基于Q-学习求解单个Agent的最优行为策略.实例表明该策略在面向多任务的领域中可以快速、有效地串行形成多个任务求解联盟.

关 键 词:串行多任务  联盟  Agent行为策略  Q-学习
收稿时间:2007-03-23
修稿时间:2007-12-25

Agent-behavior strategy in serial multi-task coalition formation
JIANG Jian-guo,SU Zhao-pin,ZHANG Guo-fu and XIA Na. Agent-behavior strategy in serial multi-task coalition formation[J]. Control Theory & Applications, 2008, 25(5): 853-856
Authors:JIANG Jian-guo  SU Zhao-pin  ZHANG Guo-fu  XIA Na
Affiliation:School of Computer and Information Science, Hefei University of Technology, Hefei Anhui 230009, China; Engineering Research Center of Safety Critical Industrial Measurement and Control Technology, Ministry of Education, Hefei Anhui 230009, China;School of Computer and Information Science, Hefei University of Technology, Hefei Anhui 230009, China; Engineering Research Center of Safety Critical Industrial Measurement and Control Technology, Ministry of Education, Hefei Anhui 230009, China;School of Computer and Information Science, Hefei University of Technology, Hefei Anhui 230009, China; Engineering Research Center of Safety Critical Industrial Measurement and Control Technology, Ministry of Education, Hefei Anhui 230009, China;School of Computer and Information Science, Hefei University of Technology, Hefei Anhui 230009, China; Engineering Research Center of Safety Critical Industrial Measurement and Control Technology, Ministry of Education, Hefei Anhui 230009, China
Abstract:Agent-coalition is an important approach to agent-coordination and cooperation, in which the coalition formation is a key topic. Existing researches are restricted in single-task environments, and the results are not applied to multi-task environments. In this paper, a new agent behavior strategy in serial multi-task coalition formation for problemsolving is presented. The conclusion shows that the agent-task selection is a Markov Decision Process. The Q-learning is used to optimize the behavior strategy for a single agent, and the cooperative multi-agent reinforcement learning improves the learning rate. Experiments prove that the strategy can effectively and serially form coalitions for multi-task.
Keywords:serial multi-task   coalitions   Agent behavior strategy   Q-learning
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《控制理论与应用》浏览原始摘要信息
点击此处可从《控制理论与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号