首页 | 本学科首页   官方微博 | 高级检索  
     

朴素贝叶斯分类器的独立性假设研究
引用本文:范金金,刘鹏. 朴素贝叶斯分类器的独立性假设研究[J]. 计算机工程与应用, 2008, 44(34): 139-141. DOI: 10.3778/j.issn.1002-8331.2008.34.043
作者姓名:范金金  刘鹏
作者单位:上海财经大学,信息管理与工程学院,上海,200433;上海财经大学,人事处,上海,200433
摘    要:朴素贝叶斯分类器(NBC)是一种简洁而有效的分类模型。介绍了NBC模型的基本原理,并着重分析了该模型的独立性假设条件。在总结现有独立性假设研究的基础上,通过例子和实验分析得出结论:NBC模型的表现和独立性假设是否满足没有必然联系。

关 键 词:数据挖掘  朴素贝叶斯分类器  独立性假设
收稿时间:2008-05-07
修稿时间:2008-8-11 

Research on Na(I)ve Bayesian Classifier's independence assumption
FAN Jin-jin,LIU Peng. Research on Na(I)ve Bayesian Classifier's independence assumption[J]. Computer Engineering and Applications, 2008, 44(34): 139-141. DOI: 10.3778/j.issn.1002-8331.2008.34.043
Authors:FAN Jin-jin  LIU Peng
Affiliation:1.School of Information Management and Engineering,Shanghai University of Finance and Economics,Shanghai 200433,China 2.Department of Human Resources,Shanghai University of Finance and Economics,Shanghai 200433,China
Abstract:Naïve Bayesian Classifier(NBC) is a simple and effective classification model.In this paper,after the introduction of the basic principle of the NBC model,the independence assumption of the model is analyzed.Based on the summary of the current research of the independence assumption,It is concluded that the satisfaction of the independence assumption is not a necessary condition for the NBC model’s efficiency,through the demonstration from an example and some experimental analysis.
Keywords:data mining  Naïve Bayesian Classifier(NBC) model  independence assumption
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号