首页 | 本学科首页   官方微博 | 高级检索  
     

高阶有限元方法在中子扩散方程中的应用
引用本文:蔡云,李庆,王侃. 高阶有限元方法在中子扩散方程中的应用[J]. 原子能科学技术, 2016, 50(1): 118-125. DOI: 10.7538/yzk.2016.50.01.0118
作者姓名:蔡云  李庆  王侃
作者单位:1.清华大学 工程物理系,北京100084;2.中国核动力研究设计院 核反应堆系统设计技术重点实验室,四川 成都610213
摘    要:应用高阶有限元方法求解中子扩散方程第1本征对和高阶本征对,比较了低阶和高阶有限元方法的性能差异以及LGL(Legendre-Gauss-Lobatto)节点和均匀网格节点之间的差异。通过二维BIBLIS和二维IAEA两个基准题,验证了该算法能求解高阶本征对。结果表明,采用LGL节点较均匀节点的高阶有限元方法求解速度更快。

关 键 词:高阶有限元方法   高阶本征向量   Legendre-Gauss-Lobatto节点

Application of High Order Finite Element Method in Neutron Diffusion Equation
CAI Yun,LI Qing,WANG Kan. Application of High Order Finite Element Method in Neutron Diffusion Equation[J]. Atomic Energy Science and Technology, 2016, 50(1): 118-125. DOI: 10.7538/yzk.2016.50.01.0118
Authors:CAI Yun  LI Qing  WANG Kan
Affiliation:1.Department of Engineering Physics, Tsinghua University, Beijing 100084, China; 2.Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
Abstract:The high order FEM (finite element method) was utilized to get the first order eigen‐pair and high order eigen‐pairs .The performances of the low order FEM and high order FEM were compared and the differences between the uniform nodes and LGL (Legendre‐Gauss‐Lobatto) nodes were elaborated .The high order FEM was verified to be able to solve the high order eigen‐pair accurately in the 2D BIBLIS and 2D IAEA benchmarks .The results show that the high order FEM with the LGL nodes performs faster than the high order FEM with uniform nodes .
Keywords:high order FEM  high order eigenvector  Legendre-Gauss-Lobatto node
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《原子能科学技术》浏览原始摘要信息
点击此处可从《原子能科学技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号