首页 | 本学科首页   官方微博 | 高级检索  
     


Enhancement-mode Al0.66In0.34As/Ga0.67In0.33As metamorphic HEMT, modeling and measurements
Authors:Boudrissa   M. Delos   E. Gaquiere   C. Rousseau   M. Cordier   Y. Theron   D. Jaeger   J.C.
Affiliation:Inst. d'Electron. et de Microelectron. du Nord, Villeneuve d'Ascq;
Abstract:This paper exhibits experimental and theoretical results on metamorphic high-electron mobility transistor (MM-HEMT). Modeling and measurements provide a better knowledge of device physics which allows us to optimize device structures. We present 10-GHz power performances, pulse and gate measurements, and two-dimensional (2-D) hydrodynamic modeling of enhancement-mode (E-mode) Al0.66In0.34As/Ga0.67In0.33 As NM-HEMT devices. It is the first time that cap layer thickness has been studied for a MM-HEMT. A typical reverse breakdown voltage of 16 V has been obtained. Gate current issued from impact ionization has been shown, for the first time, in such a device. The 2-D hydrodynamic model is a useful tool for cost engineering because it brings more information in terms of physical quantity distributions, necessary to predict breakdown behavior of FET. The 10-GHz measurements with a load-pull power set-up demonstrate the capabilities for a thick cap device with large gate-to-drain extension since an output power of 140 mW/mm have been obtained which is the state-of-the-art for such a device. These results obtained confirm the great interest of the structures for power application systems. The only work reported, to our knowledge, using a MM-HEMT structure in E-mode with an indium content close to 50% has been studied by Eisenbeiser et al.. Their typical gate-to-drain breakdown voltage was 5.2 V. The 0.6 μm ×3 mm devices exhibited 30 mW/mm at 850 MHz
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号