首页 | 本学科首页   官方微博 | 高级检索  
     

用神经网络与构造属性进行交互地震相分析
引用本文:袁全社,乐友喜. 用神经网络与构造属性进行交互地震相分析[J]. 勘探地球物理进展, 2004, 27(2): 93-98
作者姓名:袁全社  乐友喜
作者单位:石油大学(华东),山东东营,257061
摘    要:在地震资料解释工作中,一般的地震相分析工作效率较低,有时难度较大。通过计算灰度共生矩阵GLCM,从数学上描述小范围数据区内像素值的分布,量化地震反射的空间组织结构。将构造属性与神经网络分类技术相结合,通过训练网络和质量控制,利用波形相似性和地震属性进行地震相分析,可用于对三维地震资料进行地震相的划分,得到三维地震相分类数据体。这种方法减少了许多耗时的工作,使解释人员能够集中精力研究地震相,并将其综合成地质成果图。

关 键 词:神经网络;构造属性;地震相分析;波形分类
文章编号:1671-8585(2004)02-0093-06
收稿时间:2003-04-02
修稿时间:2003-04-02

Interactive analysis of seismic facies using neural network and textural attribute
Yuan Quanshe,Yue Youxi. Interactive analysis of seismic facies using neural network and textural attribute[J]. Progress in Exploration Geophysics, 2004, 27(2): 93-98
Authors:Yuan Quanshe  Yue Youxi
Affiliation:(University of Petroleum, Dongyinng 257061, China)
Abstract:Conventionally seismic facies analysis is implemented manually which is time-consuming, and in some cases, is difficult to map different seismic facies consistently. Calculation of grey-level co-occurrence matrices (GLCM) helps mathematically describe the distribution of pixel values within a subregion of data, and effectively quantify the spatial structures of seismic reflections. Thus seismic textural analysis and neural network can be successfully combined. After training and QC, seismic facies are classified in terms of waveform similarity and seismic attributes. 3-D seismic facies classification data volume can be generated.
Keywords:neural network  structural attribute  seismic facies analysis  waveform classification
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《勘探地球物理进展》浏览原始摘要信息
点击此处可从《勘探地球物理进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号