首页 | 本学科首页   官方微博 | 高级检索  
     

基于集成主成分分析的人脸识别
引用本文:王正群,邹军,刘风. 基于集成主成分分析的人脸识别[J]. 计算机应用, 2008, 28(1): 120-121,124
作者姓名:王正群  邹军  刘风
作者单位:扬州大学,信息工程学院,江苏,扬州,225009;扬州大学,信息工程学院,江苏,扬州,225009;扬州大学,信息工程学院,江苏,扬州,225009
基金项目:江苏省高校自然科学基金
摘    要:设计了一种基于主成分分析的分类器集成方法。应用随机子空间法获得多个初始分类器,由它们的分类性能给出分类器的保留分值,从而确定它们的保留优先级别,最后由保留优先级别选择一组分类器组成集成。理论分析和在人脸数据库ORL上的实验结果表明,这种基于集成PCA的分类方法能够更好地对模式进行分类。

关 键 词:维数约简  主成分分析  分类器集成  人脸识别
文章编号:1001-9081(2008)01-0120-02
收稿时间:2007-07-25
修稿时间:2007-07-25

Face recognition based on ensemble PCA
WANG Zheng-qun,ZOU Jun,LIU Feng. Face recognition based on ensemble PCA[J]. Journal of Computer Applications, 2008, 28(1): 120-121,124
Authors:WANG Zheng-qun  ZOU Jun  LIU Feng
Affiliation:WANG Zheng-qun,ZOU Jun,LIU Feng(School of Information Engineering,Yangzhou University,Yangzhou Jiangsu 225009,China)
Abstract:A classifiers ensemble approach based on Principal Component Analysis (PCA) was proposed. Lots of original classifiers were got from Random Subspace Method (RSM). According to their classification performance, their preservation scores were given, so the preferential ranks for classifiers preservation were ordered, by which a set of classifiers was selected from original classifiers. Theoretic analysis and experimental results in face database ORL show that this pattern classification method based on ensemble PCA is efficient for pattern recognition.
Keywords:face recognition  dimension reduction  principal component analysis  classifiers ensemble
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号