Abstract: | Large accelerator facilities require clocks and triggers with high accuracy to synchronize equipment and devices. A new femtosecond timing system was designed to meet the demands of new facilities. In this system, the radio-frequency signal is modulated in a continuous-wave laser carrier with frequency stabilization, and timing events are distributed in the same fiber. The phase drift is detected precisely, based on the principle of the Michelson interferometer. The phase drift is compensated with coarse and fine correctors afterward. We aim to realize the stable transmission of the RF signal and timing events for a long distance and duration, with the phase drift and additive jitter in femtoseconds. After the extension, the system will become a complete solution for the clock-and-trigger distribution of synchrotron radiation facilities, free-electron lasers, and other accelerators. The physics design, simulation analysis, and preliminary results are included in the paper. |