首页 | 本学科首页   官方微博 | 高级检索  
     

基于DRNN神经网络的石油钻机自动送钻系统智能控制研究
引用本文:王沣涛,朱小平. 基于DRNN神经网络的石油钻机自动送钻系统智能控制研究[J]. 内蒙古石油化工, 2006, 32(12): 158-160
作者姓名:王沣涛  朱小平
作者单位:西安石油大学机械工程学院,陕西,西安,710065
摘    要:针对钻井过程的非线性、不确定性和实时性要求,采用基于对角神经网络(DRNN)的控制方案,能在线自适应的调整P ID控制器的3项参数。以自动送钻实验系统模型为被控系统进行仿真实验,仿真结果表明可以达到较为理想的控制结果,基于DRNN神经网络控制器结构简单,易于实现,效果明显优于传统的P ID控制器。

关 键 词:自动送钻  PID控制  对角神经网络
收稿时间:2006-09-12

A study of a DRNN-based smart control experimental system for use with automatic bit feed on rig
WANG Feng-tao,ZHU Xiao-ping. A study of a DRNN-based smart control experimental system for use with automatic bit feed on rig[J]. Inner Mongulia Petrochemical Industry, 2006, 32(12): 158-160
Authors:WANG Feng-tao  ZHU Xiao-ping
Abstract:For the non-linearity,uncertaniny and real time requirements of the hole conditions in drilling process,a controller system based on a diagonal recurrent neural network(DRNN) is used and the system can realize the self-tuning of three parameters of PID.In simulating experiment the simulating experimental system for automatic bit feed is considered as controlled system.The result of simulations shows that the system can achive ideal control,a controller system based on a diagonal recurrent neural network is simple but more effective than traditional PID control.
Keywords:automatic bit feed  PID control  diagonal recurrent neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号