首页 | 本学科首页   官方微博 | 高级检索  
     

基于免疫克隆高斯过程隐变量模型的SAR目标特征提取与识别
引用本文:张向荣,缑丽敏,李阳阳,冯捷,焦李成. 基于免疫克隆高斯过程隐变量模型的SAR目标特征提取与识别[J]. 红外与毫米波学报, 2013, 32(3): 231-236
作者姓名:张向荣  缑丽敏  李阳阳  冯捷  焦李成
作者单位:西安电子科技大学智能感知与图像理解教育部重点实验室,陕西西安,710071
基金项目:国家自然科学基金(61072106,60972148,61050110144);陕西省自然科学基金(2011JQ8020);中央高校基本科研业务费专项资金(JY10000902001, JY10000902045, K50511020011资助。
摘    要:作为一种非线性维数约减算法,高斯过程隐变量模型(Gaussian process latent variable model,GPLVM)由于其适合处理小样本、高维数据,因而在模式识别、计算机视觉等领域得到了广泛应用.基于此,提出一种基于改进GPLVM的SAR图像目标特征提取及自动识别方法,其中利用改进的GPLVM进行特征提取,高斯过程分类进行目标识别.传统GPLVM使用共轭梯度法对似然函数进行优化,为避免梯度估值易受噪声干扰、步长对算法影响严重等缺点,提出基于免疫克隆选择算法的GPLVM,利用其具有快速收敛到全局最优的特性提高算法性能.实验结果表明,该算法不仅降低了特征维数,且提高了识别精度,从而验证了算法用于SAR图像目标识别的有效性.

关 键 词:高斯过程隐变量模型  免疫克隆选择算法  特征提取  SAR图像目标识别
收稿时间:2012-02-22
修稿时间:2012-04-26

Gaussian process latent variable model based on immune clonal selection for SAR target feature extraction and recognition
ZHANG Xiang-Rong,GOU Li-Min,LI Yang-Yang,FENG Jie and JIAO Li-Cheng. Gaussian process latent variable model based on immune clonal selection for SAR target feature extraction and recognition[J]. Journal of Infrared and Millimeter Waves, 2013, 32(3): 231-236
Authors:ZHANG Xiang-Rong  GOU Li-Min  LI Yang-Yang  FENG Jie  JIAO Li-Cheng
Affiliation:Xidian University,Xidian University,Xidian University,Xidian University,Xidian University
Abstract:As an unsupervised dimension reduction algorithm, Gaussian process latent variable model (GPLVM) has been widely applied in pattern recognition, and computer vision for its capability in dealing with small samples and high dimensional data samples. As GPLVM can discover low dimensional manifolds in high dimensional data given only a small number of examples, a new SAR target recognition method is proposed which combines Gaussian process latent variable model as the feature extraction technology and employs Gaussian process classification as the classifier. In GPLVM, the likelihood is optimized by using the scaled conjugate gradient. In order to avoid the noise effect to gradient estimate and overcome the disadvantage that the performance is severely affected by the step length, the immune clone algorithm based GPLVM is proposed for feature extraction where the immune clonal selection algorithm characterized by rapid convergence to global optimum is utilized to improve the performance. The experimental results show that the method not only reduces the problem dimension but also gets better recognition accuracy.
Keywords:Gaussian process latent variable model   Immune Clonal Selection Algorithm   Dimension Reduction   SAR target recognition
本文献已被 万方数据 等数据库收录!
点击此处可从《红外与毫米波学报》浏览原始摘要信息
点击此处可从《红外与毫米波学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号