首页 | 本学科首页   官方微博 | 高级检索  
     


Protein folding: how the mechanism of GroEL action is defined by kinetics
Authors:C Frieden  AC Clark
Affiliation:Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA. frieden@biochem.wustl.edu
Abstract:We propose a mechanism for the role of the bacterial chaperonin GroEL in folding proteins. The principal assumptions of the mechanism are (i) that many unfolded proteins bind to GroEL because GroEL preferentially binds small unstructured regions of the substrate protein, (ii) that substrate protein within the cavity of GroEL folds by the same kinetic mechanism and rate processes as in bulk solution, (iii) that stable or transient complexes with GroEL during the folding process are defined by a kinetic partitioning between formation and dissociation of the complex and the rate of folding and unfolding of the protein, and (iv) that dissociation from the complex in early stages of folding may lead to aggregation but dissociation at a late stage leads to correct folding. The experimental conditions for refolding may play a role in defining the function of GroEL in the folding pathway. We propose that the role of GroES and MgATP, either binding or hydrolysis, is to regulate the association and dissociation processes rather than affecting the rate of folding.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号